31 research outputs found

    Interference Path Loss Prediction in A319/320 Airplanes Using Modulated Fuzzy Logic and Neural Networks

    Get PDF
    In this paper, neural network (NN) modeling is combined with fuzzy logic to estimate Interference Path Loss measurements on Airbus 319 and 320 airplanes. Interference patterns inside the aircraft are classified and predicted based on the locations of the doors, windows, aircraft structures and the communication/navigation system-of-concern. Modeled results are compared with measured data. Combining fuzzy logic and NN modeling is shown to improve estimates of measured data over estimates obtained with NN alone. A plan is proposed to enhance the modeling for better prediction of electromagnetic coupling problems inside aircraft

    Simulating electromagnetic field inside small aircraft from wireless camera equipment

    Get PDF
    This work forms part of the project HIRF SE which is financially supported under the European Union 7th Framework Programme (FP7). The authors are solely responsible for the contents of the paper which does not represent the opinion of the European Commission.The proliferation of wireless systems has urged the aviation industry to consider the exploitation of such a technology to introduce new services and to curtail its cabling weight requirements. Nevertheless, prior to implementing such communication systems, manufactures must ensure that the paramount criterion of aircraft safety is unaffected and thus the potential electromagnetic (EM) field posed on aircraft equipment must be carefully assessed and respective countermeasures taken. To this end, this paper adopts a frequency-domain based three-dimensional ray tracing algorithm, based on geometrical optics to compute the EM field generated from the use of wireless camera equipment transmitting at 2.4 GHz inside the cabin of a typical business jet. The model comprehensively considers the various propagation methodologies utilized by multipath signals to provide a holistic understanding of the resultant average field strength incident at each location inside the fuselage.peer-reviewe

    Modeling electromagnetic interference generated by a WLAN system onboard commercial aircraft

    Get PDF
    This work forms part of the project HIRF SE which is financially supported under the European Union 7th Framework Programme (FP7). The authors are solely responsible for the contents of the paper which does not represent the opinion of the European Commission.The growing demand for the utilization of personal electronic communication devices onboard commercial aircraft necessitates the assurance of safety by airline operators and regulators. This implies that the potential risks posed by the deployment of wireless communication systems on critical aircraft equipment must be carefully assessed and countermeasures taken when required. In this paper, a model based on a ray-tracing algorithm is developed to calculate the electromagnetic interference incident on the fuselage structure of a commercial airline. The source of interference is a 2.4 GHz data communications network. Two scenarios are considered; the first assumes a base station in the centre of the cabin while the second considers four base stations, transmitting at a lower power, distributed along the cabin. The model first determines the propagation map generated by the base stations. These results are used to establish the transmission power required by the personal mobile devices which is then employed to determine the propagation map of each device. The overall electromagnetic interference map incident on the fuselage resulting from the onboard wireless network is generated by vectorially combining the resulting propagation maps. Results for the two scenarios are presented.peer-reviewe

    Electromagnetic Interference to Flight Navigation and Communication Systems: New Strategies in the Age of Wireless

    Get PDF
    Electromagnetic interference (EMI) promises to be an ever-evolving concern for flight electronic systems. This paper introduces EMI and identifies its impact upon civil aviation radio systems. New wireless services, like mobile phones, text messaging, email, web browsing, radio frequency identification (RFID), and mobile audio/video services are now being introduced into passenger airplanes. FCC and FAA rules governing the use of mobile phones and other portable electronic devices (PEDs) on board airplanes are presented along with a perspective of how these rules are now being rewritten to better facilitate in-flight wireless services. This paper provides a comprehensive overview of NASA cooperative research with the FAA, RTCA, airlines and universities to obtain laboratory radiated emission data for numerous PED types, aircraft radio frequency (RF) coupling measurements, estimated aircraft radio interference thresholds, and direct-effects EMI testing. These elements are combined together to provide high-confidence answers regarding the EMI potential of new wireless products being used on passenger airplanes. This paper presents a vision for harmonizing new wireless services with aeronautical radio services by detecting, assessing, controlling and mitigating the effects of EMI

    Prediction of interference Pathloss Inside Commercial Aircraft Using Modulated Fuzzy Logic and Neural Networks

    Get PDF
    Although several modeling techniques have been used to model indoor radio wave propagation and coupling patterns, to date no efficient model exists that calculates indoor-outdoor radio wave propagations on commercial aircraft. Due to the complexity of an aircraft structure, with the additive introduction of creeping wave phenomenon and unknown back-door propagation values from the exterior aircraft antenna to the avionics bay, numerical modeling approaches using Method of Moments (MoM) or Finite Difference Time Domain (FDTD) prove too complex with limitations. This dissertation presents an expert neuro-fuzzy (NF) model for Interference pathloss (IPL) predictions inside an Airbus 320 (A320) airplane, for radio systems from 75 to 1585 MHz. This novel model generates IPL pattern through fuzzy logic, incorporating linear expert knowledge into the patterns. The model also uses feed-forward neural networks to derive meanings from complicated or imprecise data, extract patterns and detect trends in the IPL data that are too complex to be noticed by either humans or other computer techniques. Unlike previous approaches, the model presented is robust in incorporating both low to high band frequencies. It is also computationally efficient and reliable

    Measurement-Based Analysis of Transmit Antenna Selection for In-Cabin Distributed MIMO System

    Get PDF
    Aircraft seems to be the last isolated island where the wireless access is still not available. In this paper, we consider the distributed multiple-input multiple-output (D-MIMO) system application based on measurements in aircraft cabin. The channel response matrices of in-cabin D-MIMO system are collected by using a wideband channel sounder. Channel capacities with optimum transmit antenna selections (TASs) are calculated from the measured data at different receiver positions. Then the optimum capacity results are compared to those without selection in different transmit SNR. It is shown that the TAS can lead obvious capacity gain, especially in the front and back of cabin. The capacity gain represents a decreasing trend with the transmit SNR increasing. The optimal transmit antenna subset is closely related to the transmit SNR. With the SNR increasing, more transmit antennas will be chosen for higher performance. The subset of those transmit antennas near the receiver is a reasonable choice in practical application of D-MIMO system

    Doctor of Philosophy

    Get PDF
    dissertationWireless communication has become an essential part of everyday life. The hunger for more data, more phone calls, more video, and more access in more places, including vehicles, is growing massively. Communication in vehicles is particularly challenging because of their extremely high multipath environment. In addition, there is significant interest in reducing the number of wires in vehicles to reduce weight, complexity, maintenance, etc. and replace them with wireless systems. Preliminary research shows that MIMO systems take advantage of the extreme multipath environment found in aircraft and other vehicles and also provides more consistent channel capacity than SISO systems. The purpose of this research was to quantify complex channels (including the aircraft/vehicle environment) and their relation to other environments, evaluate MIMO in aircraft, provide design constraints for accurately modeling complex channels, and provide information to predict optimum antenna type and location to enable communication in aircraft/cars/buses/ships/trains/etc. and other extreme channels. The ability to evaluate and design MIMO technologies from the guidelines in this paper is potentially transformative for aircraft safety - enabling a new generation of location specific monitoring and maintenance. Average measured capacity was found to be between 18 and 21 bits/s/Hz using a 4x4 array of antennas, and had no direct relation to the size of the channel. Site-specific capacity showed a multipath rich channel, varying between 15 to 23 bits/s/Hz. The capacity decreased for increasing measurement distance, with exceptions near reflective objects that increase multipath. Due to these special circumstances for site-specific locations within complex channels, it is recommended that 3D ray tracing be used for modeling as it is more accurate than commonly used statistical models, within 1.1 bits/s/Hz. This showed that our 3D ray tracing is adaptable to various environments and gives a more accurate depiction than statistical models that average channel variations. This comes at the cost of greater model complexity. If increased complexity is not desirable, Nakagami 1.4 could be used as the next most accurate model. Design requirements for modeling different complex channels involve a detailed depiction of channel geometry, including height, width, length, shape (square, cylindrical, slanted walls, etc.), large windows, and reflective objects inside the channel space, especially those near the transmitter. Overall, the multipath rich channel found in vehicles is an excellent environment for MIMO systems. These complex channels can be simulated accurately without measurement and before they are even built using our sitespecific 3D ray tracing software combined with a detailed signal model to incorporate antenna effects

    Channel Capacity Analysis of Distributed MIMO Systems in Cabin

    Get PDF
    采用自主搭建的信道测量平台测得了机舱环境下分布式MIMO系统的信道冲击响应矩阵。根据实测的信道矩阵分别计算了4种具有不同收发天线数目的分布式MIMO系统的信道容量。为了便于比较,SISO系统的信道容量也通过实测数据进行了计算。计算结果表明:在机舱环境下,采用分布式MIMO系统和采用SISO系统相比能够显著提高系统信道容量,说明分布式MIMO系统可以充分满足未来机舱内无线通信高速率数据传输的需求。With the self-built channel measurement platform,the channel matrix of in-cabin distributed MIMO system is measured.The channel capacity of 4 different distributed MIMO systems and also the channel capacity of one SISO system are calculated from the measured data.The calculation results show that as compared with one SISO system,the distributed MIMO system could significantly raise the capacity gain in the aircraft cabin environment,and thus could fully satisfy the requirements of high data-rate delivery for future in-cabin wireless communication.国家科技重大专项课题(No.2009ZX03002-002);国家重点基础研究发展规划项目资助(No.2007CB310608);国家863项目资助(No.2009AA011501);国家科技合作项目(No.2010DFB10410);清华-高通联合研究计划资助项目;长江学者和创新团队发展计划资助项目;中国博士后科学基

    Dense wireless network design and evaluation – an aircraft cabin use case

    Get PDF
    One of the key requirements of fifth generation (5G) systems is having a connection to mobile networks without interruption at anytime and anywhere, which is also known as seamless connectivity. Nowadays, fourth generation (4G) systems, Long Term Evolution (LTE) and Long Term Evolution Advanced (LTE-A), are mature enough to provide connectivity to most terrestrial mobile users. However, for airborne mobile users, there is no connection that exists without interruption. According to the regulations, mobile connectivity for aircraft passengers can only be established when the altitude of the aircraft is above 3000 m. Along with demands to have mobile connectivity during a flight and the seamless connectivity requirement of 5G systems, there is a notable interest in providing in-flight wireless services during all phases of a flight. In this thesis, many issues related to the deployment and operation of the onboard systems have been investigated. A measurement and modelling procedure to investigate radio frequency (RF) propagation inside an aircraft is proposed in this thesis. Unlike in existing studies for in-cabin channel characterization, the proposed procedure takes into account the deployment of a multi-cell onboard system. The proposed model is verified through another set of measurements where reference signal received power (RSRP) levels inside the aircraft are measured. The results show that the proposed model closely matches the in-cabin RSRP measurements. Moreover, in order to enforce the distance between a user and an interfering resource, cell sectorization is employed in the multi-cell onboard system deployment. The proposed propagation model is used to find an optimum antenna orientation that minimizes the interference level among the neighbouring evolved nodeBs (eNBs). Once the optimum antenna deployment is obtained, comprehensive downlink performance evaluations of the multi-cell, multi-user onboard LTE-A system is carried out. Techniques that are proposed for LTE-A systems, namely enhanced inter-cell interference coordination (eICIC) and carrier aggregation (CA), are employed in the system analysis. Different numbers of eNBs, antenna mounting positions and scheduling policies are examined. A scheduling algorithm that provides a good tradeoff between fairness and system throughput is proposed. The results show that the downlink performance of the proposed onboard LTE-A system achieves not only 75% of the theoretical limits of the overall system throughput but also fair user data rate performance, irrespective of a passenger’s seat location. In order to provide the seamless connectivity requirement of 5G systems, compatibility between the proposed onboard system deployment and the already deployed terrestrial networks is investigated. Simulation based analyses are carried out to investigate power leakage from the onboard systems while the aircraft is in the parked position on the apron. According to the regulations, the onboard system should not increase the noise level of the already deployed terrestrial system by 1 dB. Results show that the proposed onboard communication system can be operated while the aircraft is in the parked position on the apron without exceeding the 1 dB increase in the noise level of the already deployed terrestrial 4G network. Furthermore, handover parameters are obtained for different transmission power levels of both the terrestrial and onboard systems to make the transition from one system to another without interruption while a passenger boards or leaves the aircraft. Simulation and measurement based analyses show that when the RSRP level of the terrestrial system is below -65 dBm around the aircraft, a boarding passenger can be smoothly handed over to the onboard system and vice versa. Moreover, in order to trigger the handover process without interfering with the data transmission, a broadcast control channel (BCCH) power boosting feature is proposed for the in-cabin eNBs. Results show that employing the BCCH power boosting feature helps to trigger the handover process as soon as the passengers step on board the aircraft
    corecore