29,546 research outputs found

    Terahertz Wireless Channels: A Holistic Survey on Measurement, Modeling, and Analysis

    Full text link
    Terahertz (0.1-10 THz) communications are envisioned as a key technology for sixth generation (6G) wireless systems. The study of underlying THz wireless propagation channels provides the foundations for the development of reliable THz communication systems and their applications. This article provides a comprehensive overview of the study of THz wireless channels. First, the three most popular THz channel measurement methodologies, namely, frequency-domain channel measurement based on a vector network analyzer (VNA), time-domain channel measurement based on sliding correlation, and time-domain channel measurement based on THz pulses from time-domain spectroscopy (THz-TDS), are introduced and compared. Current channel measurement systems and measurement campaigns are reviewed. Then, existing channel modeling methodologies are categorized into deterministic, stochastic, and hybrid approaches. State-of-the-art THz channel models are analyzed, and the channel simulators that are based on them are introduced. Next, an in-depth review of channel characteristics in the THz band is presented. Finally, open problems and future research directions for research studies on THz wireless channels for 6G are elaborated.Comment: to appear in IEEE Communications Surveys and Tutorial

    System Modelling and Design Aspects of Next Generation High Throughput Satellites

    Get PDF
    Future generation wireless networks are targeting the convergence of fixed, mobile and broadcasting systems with the integration of satellite and terrestrial systems towards utilizing their mutual benefits. Satellite Communications (Sat- Com) is envisioned to play a vital role to provide integrated services seamlessly over heterogeneous networks. As compared to terrestrial systems, the design of SatCom systems require a different approach due to differences in terms of wave propagation, operating frequency, antenna structures, interfering sources, limitations of onboard processing, power limitations and transceiver impairments. In this regard, this letter aims to identify and discuss important modeling and design aspects of the next generation High Throughput Satellite (HTS) systems. First, communication models of HTSs including the ones for multibeam and multicarrier satellites, multiple antenna techniques, and for SatCom payloads and antennas are highlighted and discussed. Subsequently, various design aspects of SatCom transceivers including impairments related to the transceiver, payload and channel, and traffic-based coverage adaptation are presented. Finally, some open topics for the design of next generation HTSs are identified and discussed.Comment: submitted to IEEE Journa

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Antennas and Propagation Aspects for Emerging Wireless Communication Technologies

    Get PDF
    The increasing demand for high data rate applications and the delivery of zero-latency multimedia content drives technological evolutions towards the design and implementation of next-generation broadband wireless networks. In this context, various novel technologies have been introduced, such as millimeter wave (mmWave) transmission, massive multiple input multiple output (MIMO) systems, and non-orthogonal multiple access (NOMA) schemes in order to support the vision of fifth generation (5G) wireless cellular networks. The introduction of these technologies, however, is inextricably connected with a holistic redesign of the current transceiver structures, as well as the network architecture reconfiguration. To this end, ultra-dense network deployment along with distributed massive MIMO technologies and intermediate relay nodes have been proposed, among others, in order to ensure an improved quality of services to all mobile users. In the same framework, the design and evaluation of novel antenna configurations able to support wideband applications is of utmost importance for 5G context support. Furthermore, in order to design reliable 5G systems, the channel characterization in these frequencies and in the complex propagation environments cannot be ignored because it plays a significant role. In this Special Issue, fourteen papers are published, covering various aspects of novel antenna designs for broadband applications, propagation models at mmWave bands, the deployment of NOMA techniques, radio network planning for 5G networks, and multi-beam antenna technologies for 5G wireless communications

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Accurate and efficient full-wave modelling for indoor radio wave propagation

    Get PDF
    The transition towards next-generation communication technologies has increased the need for accurate knowledge about the wireless channel. Knowledge of radio wave propagation is vital to the continued development of efficient wireless communications systems capable of providing a high data throughput and reliable connection. Thus, there is an increased need for accurate propagation models that can rapidly predict and describe the propagation channel. This is extremely challenging for indoor environments given the large variety of materials encountered and very complex and widely varying geometries.Currently, empirical or ray optical models are the most common for indoor propagation. Empirical models based on measurement campaigns provide limited accuracy, are very costly and time-consuming but provide rapid predictions. Deterministic models are applied to the geometrical representation of the environment and are based on Maxwell’s equations. They can produce more accurate predictions than empirical models. Ray tracing, an approximate model, is the most popular deterministic model for indoor propagation. The current trend of research is focused on improving its accuracy. Full-wave propagation models are based on the numerical solution of Maxwell’s equations. They are able to produce accurate predictions about the wireless channel. However, they are very computationally expensive. Thus, there has been limited attempts at developing indoor propagation models based on full-wave techniques. In this work, the Volume Electric Field Integral Equation (VEFIE) is used as the basis of a full-wave indoor propagation model. The 2D and 3D formulations of the VEFIE are applied to model the propagation of radio waves indoors. An enhancement to the 2D VEFIE, called 2D to 3D models, is developed to improve its accuracy and utilise its efficiency. It is primarily used for the prediction of time domain characteristics due to its high efficiency whereas the 3D VEFIE is shown to be suitable for frequency domain predictions
    • …
    corecore