3,136 research outputs found

    Leaderless Byzantine Fault Tolerant Consensus

    Full text link
    Byzantine fault tolerant (BFT) consensus has recently gained much attention because of its intriguing connection with blockchains. Several state-of-the-art BFT consensus protocols have been proposed in the age of blockchains such as Tendermint [5], Pala [9], Streamlet [8], HotStuff [23], and Fast-HotStuff [17]. These protocols are all leader-based (i.e., protocols run in a series of views, and each view has a delegated node called the leader to coordinate all consensus decisions). To make progress, leader-based BFT protocols usually rely on view synchronization, which is an ad-hoc way of rotating the leader and synchronizing nodes to the same view with the leader for enough overlap time. However, many studies and system implementations show that existing methods of view synchronization are complicated and bug-prone [2], [15], [16], [19]. In this paper, we aim to design a leaderless Byzantine fault tolerant (LBFT) protocol, in which nodes simply compete to propose blocks (containing a batch of clients' requests) without the need of explicit coordination through view synchronization. LBFT also enjoys several other desirable features emphasized recently by the research community, such as the chain structure, pipelining techniques, and advanced cryptography [5], [6], [9], [17], [23]. With these efforts, LBFT can achieve both good performance (e.g., O(n)or O(nlog(n)) message complexity) and prominent simplicity.Comment: 13 page, 4 figure

    The Generals’ Scuttlebutt: Byzantine-Resilient Gossip Protocols

    Get PDF
    One of the most successful applications of peer-to-peer communication networks is in the context of blockchain protocols, which—in Satoshi Nakamoto\u27s own words—rely on the nature of information being easy to spread and hard to stifle. Significant efforts were invested in the last decade into analyzing the security of these protocols, and invariably the security arguments known for longest-chain Nakamoto-style consensus use an idealization of this tenet. Unfortunately, the real-world implementations of peer-to-peer gossip-style networks used by blockchain protocols rely on a number of ad-hoc attack mitigation strategies that leave a glaring gap between the idealized communication layer assumed in formal security arguments for blockchains and the real world, where a wide array of attacks have been showcased. In this work we bridge this gap by presenting a Byzantine-resilient network layer for blockchain protocols. For the first time we quantify the problem of network-layer attacks in the context of blockchain security models, and we develop a design that thwarts resource restricted adversaries. Importantly, we focus on the proof-of-stake setting due to its vulnerability to Denial-of-Service (DoS) attacks stemming from the well-known deficiency (compared to the proof-of-work setting) known as nothing at stake. We present a Byzantine-resilient gossip protocol, and we analyze it in the Universal Composition framework. In order to prove security, we show novel results on expander properties of random graphs. Importantly, our gossip protocol can be based on any given bilateral functionality that determines a desired interaction between two adjacent peers in the networking layer and demonstrates how it is possible to use application-layer information to make the networking-layer resilient to attacks. Despite the seeming circularity, we demonstrate how to prove the security of a Nakamoto-style longest-chain protocol given our gossip networking functionality, and hence, we demonstrate constructively how it is possible to obtain provable security across protocol layers, given only bare-bone point-to-point networking, majority of honest stake, and a verifiable random function

    Ebb-and-Flow Protocols: A Resolution of the Availability-Finality Dilemma

    Get PDF
    The CAP theorem says that no blockchain can be live under dynamic participation and safe under temporary network partitions. To resolve this availability-finality dilemma, we formulate a new class of flexible consensus protocols, ebb-and-flow protocols, which support a full dynamically available ledger in conjunction with a finalized prefix ledger. The finalized ledger falls behind the full ledger when the network partitions but catches up when the network heals. Gasper, the current candidate protocol for Ethereum 2.0's beacon chain, combines the finality gadget Casper FFG with the LMD GHOST fork choice rule and aims to achieve this property. However, we discovered an attack in the standard synchronous network model, highlighting a general difficulty with existing finality-gadget-based designs. We present a construction of provably secure ebb-and-flow protocols with optimal resilience. Nodes run an off-the-shelf dynamically available protocol, take snapshots of the growing available ledger, and input them into a separate off-the-shelf BFT protocol to finalize a prefix. We explore connections with flexible BFT and improve upon the state-of-the-art for that problem.Comment: Forthcoming in IEEE Symposium on Security and Privacy 202
    • …
    corecore