72,674 research outputs found

    Proof-relevant logical relations for name generation

    Get PDF
    Pitts and Stark's nu-calculus is a paradigmatic total language for studying the problem of contextual equivalence in higher-order languages with name generation. Models for the nu-calculus that validate basic equivalences concerning names may be constructed using functor categories or nominal sets, with a dynamic allocation monad used to model computations that may allocate fresh names. If recursion is added to the language and one attempts to adapt the models from (nominal) sets to(nominal)domains, however, the direct-style construction of the allocation monad no longer works. This issue has previously been addressed by using a monad that combines dynamic allocation with continuations, at some cost to abstraction. This paper presents a direct-style model of a nu-calculus-like language with recursion using the novel framework of proof-relevant logical relations, in which logical relations also contain objects (or proofs) demonstrating the equivalence of (the semantic counterparts of) programs. Apart from providing a fresh solution to an old problem, this work provides an accessible setting in which to introduce the use of proof-relevant logical relations, free of the additional complexities associated with their use for more sophisticated languages

    Towards an Intelligent Tutor for Mathematical Proofs

    Get PDF
    Computer-supported learning is an increasingly important form of study since it allows for independent learning and individualized instruction. In this paper, we discuss a novel approach to developing an intelligent tutoring system for teaching textbook-style mathematical proofs. We characterize the particularities of the domain and discuss common ITS design models. Our approach is motivated by phenomena found in a corpus of tutorial dialogs that were collected in a Wizard-of-Oz experiment. We show how an intelligent tutor for textbook-style mathematical proofs can be built on top of an adapted assertion-level proof assistant by reusing representations and proof search strategies originally developed for automated and interactive theorem proving. The resulting prototype was successfully evaluated on a corpus of tutorial dialogs and yields good results.Comment: In Proceedings THedu'11, arXiv:1202.453

    An Improved Algorithm for Generating Database Transactions from Relational Algebra Specifications

    Full text link
    Alloy is a lightweight modeling formalism based on relational algebra. In prior work with Fisler, Giannakopoulos, Krishnamurthi, and Yoo, we have presented a tool, Alchemy, that compiles Alloy specifications into implementations that execute against persistent databases. The foundation of Alchemy is an algorithm for rewriting relational algebra formulas into code for database transactions. In this paper we report on recent progress in improving the robustness and efficiency of this transformation

    LangPro: Natural Language Theorem Prover

    Get PDF
    LangPro is an automated theorem prover for natural language (https://github.com/kovvalsky/LangPro). Given a set of premises and a hypothesis, it is able to prove semantic relations between them. The prover is based on a version of analytic tableau method specially designed for natural logic. The proof procedure operates on logical forms that preserve linguistic expressions to a large extent. %This property makes the logical forms easily obtainable from syntactic trees. %, in particular, Combinatory Categorial Grammar derivation trees. The nature of proofs is deductive and transparent. On the FraCaS and SICK textual entailment datasets, the prover achieves high results comparable to state-of-the-art.Comment: 6 pages, 8 figures, Conference on Empirical Methods in Natural Language Processing (EMNLP) 201

    A review of the state of the art in Machine Learning on the Semantic Web: Technical Report CSTR-05-003

    Get PDF
    • …
    corecore