17,099 research outputs found

    Proof search issues in some non-classical logics

    Get PDF
    This thesis develops techniques and ideas on proof search. Proof search is used with one of two meanings. Proof search can be thought of either as the search for a yes/no answer to a query (theorem proving), or as the search for all proofs of a formula (proof enumeration). This thesis is an investigation into issues in proof search in both these senses for some non-classical logics. Gentzen systems are well suited for use in proof search in both senses. The rules of Gentzen sequent calculi are such that implementations can be directed by the top level syntax of sequents, unlike other logical calculi such as natural deduction. All the calculi for proof search in this thesis are Gentzen sequent calculi. In Chapter 2, permutation of inference rules for Intuitionistic Linear Logic is studied. A focusing calculus, ILLF, in the style of Andreoli ([And92]) is developed.This calculus allows only one proof in each equivalence class of proofs equivalent up to permutations of inferences. The issue here is both theorem proving and proof enumeration. For certain logics, normal natural deductions provide a proof-theoretic semantics. Proof enumeration is then the enumeration of all these deductions. Herbelin’s cutfree LJT ([Her95], here called MJ) is a Gentzen system for intuitionistic logic allowing derivations that correspond in a 1–1 way to the normal natural deductions of intuitionistic logic. This calculus is therefore well suited to proof enumeration. Such calculi are called ‘permutation-free’ calculi. In Chapter 3, MJ is extended to a calculus for an intuitionistic modal logic (due to Curry) called Lax Logic. We call this calculus PFLAX. The proof theory of MJ is extended to PFLAX. Chapter 4 presents work on theorem proving for propositional logics using a history mechanism for loop-checking. This mechanism is a refinement of one developed by Heuerding et al ([HSZ96]). It is applied to two calculi for intuitionistic logic and also to two modal logics: Lax Logic and intuitionistic S4. The calculi for intuitionistic logic are compared both theoretically and experimentally with other decision procedures for the logic. Chapter 5 is a short investigation of embedding intuitionistic logic in Intuitionistic Linear Logic. A new embedding of intuitionistic logic in Intuitionistic Linear Logic is given. For the hereditary Harrop fragment of intuitionistic logic, this embedding induces the calculus MJ for intuitionistic logic. In Chapter 6 a ‘permutation-free’ calculus is given for Intuitionistic Linear Logic. Again, its proof-theoretic properties are investigated. The calculus is proved to besound and complete with respect to a proof-theoretic semantics and (weak) cutelimination is proved. Logic programming can be thought of as proof enumeration in constructive logics. All the proof enumeration calculi in this thesis have been developed with logic programming in mind. We discuss at the appropriate points the relationship between the calculi developed here and logic programming. Appendix A contains presentations of the logical calculi used and Appendix B contains the sets of benchmark formulae used in Chapter

    Proof Search Issues in Some Non-Classical Logics

    Get PDF
    This thesis develops techniques and ideas on proof search. Proof search is used with one of two meanings. Proof search can be thought of either as the search for a yes/no answer to a query (theorem proving), or as the search for all proofs of a formula (proof enumeration). This thesis is an investigation into issues in proof search in both these senses for some non-classical logics. Gentzen systems are well suited for use in proof search in both senses. The rules of Gentzen sequent calculi are such that implementations can be directed by the top level syntax of sequents, unlike other logical calculi such as natural deduction. All the calculi for proof search in this thesis are Gentzen sequent calculi. In Chapter 2, permutation of inference rules for Intuitionistic Linear Logic is studied. A focusing calculus, ILLF, in the style of Andreoli (citeandreoli-92) is developed. This calculus allows only one proof in each equivalence class of proofs equivalent up to permutations of inferences. The issue here is both theorem proving and proof enumeration. For certain logics, normal natural deductions provide a proof-theoretic semantics. Proof enumeration is then the enumeration of all these deductions. Herbelin's cut-free LJT (citeherb-95, here called MJ) is a Gentzen system for intuitionistic logic allowing derivations that correspond in a 1--1 way to the normal natural deductions of intuitionistic logic. This calculus is therefore well suited to proof enumeration. Such calculi are called `permutation-free' calculi. In Chapter 3, MJ is extended to a calculus for an intuitionistic modal logic (due to Curry) called Lax Logic. We call this calculus PFLAX. The proof theory of MJ is extended to PFLAX. Chapter 4 presents work on theorem proving for propositional logics using a history mechanism for loop-checking. This mechanism is a refinement of one developed by Heuerding emphet al (citeheu-sey-zim-96). It is applied to two calculi for intuitionistic logic and also to two modal logics: Lax Logic and intuitionistic S4. The calculi for intuitionistic logic are compared both theoretically and experimentally with other decision procedures for the logic. Chapter 5 is a short investigation of embedding intuitionistic logic in Intuitionistic Linear Logic. A new embedding of intuitionistic logic in Intuitionistic Linear Logic is given. For the hereditary Harrop fragment of intuitionistic logic, this embedding induces the calculus MJ for intuitionistic logic. In Chapter 6 a `permutation-free' calculus is given for Intuitionistic Linear Logic. Again, its proof-theoretic properties are investigated. The calculus is proved to be sound and complete with respect to a proof-theoretic semantics and (weak) cut-elimination is proved. Logic programming can be thought of as proof enumeration in constructive logics. All the proof enumeration calculi in this thesis have been developed with logic programming in mind. We discuss at the appropriate points the relationship between the calculi developed here and logic programming. Appendix A contains presentations of the logical calculi used and Appendix B contains the sets of benchmark formulae used in Chapter 4

    Proof search issues in some non-classical logics

    Get PDF
    This thesis develops techniques and ideas on proof search. Proof search is used with one of two meanings. Proof search can be thought of either as the search for a yes/no answer to a query (theorem proving), or as the search for all proofs of a formula (proof enumeration). This thesis is an investigation into issues in proof search in both these senses for some non-classical logics. Gentzen systems are well suited for use in proof search in both senses. The rules of Gentzen sequent calculi are such that implementations can be directed by the top level syntax of sequents, unlike other logical calculi such as natural deduction. All the calculi for proof search in this thesis are Gentzen sequent calculi. In Chapter 2, permutation of inference rules for Intuitionistic Linear Logic is studied. A focusing calculus, ILLF, in the style of Andreoli ([And92]) is developed. This calculus allows only one proof in each equivalence class of proofs equivalent up to permutations of inferences. The issue here is both theorem proving and proof enumeration. For certain logics, normal natural deductions provide a proof-theoretic semantics. Proof enumeration is then the enumeration of all these deductions. Herbelin's cut- free LJT ([Her95], here called MJ) is a Gentzen system for intuitionistic logic allowing derivations that correspond in a 1-1 way to the normal natural deductions of intuitionistic logic. This calculus is therefore well suited to proof enumeration. Such calculi are called 'permutation-free' calculi. In Chapter 3, MJ is extended to a calculus for an intuitionistic modal logic (due to Curry) called Lax Logic. We call this calculus PFLAX. The proof theory of MJ is extended to PFLAX. Chapter 4 presents work on theorem proving for propositional logics using a history mechanism for loop-checking. This mechanism is a refinement of one developed by Heuerding et al ([HSZ96]). It is applied to two calculi for intuitionistic logic and also to two modal logics; Lax Logic and intuitionistic S4. The calculi for intuitionistic logic are compared both theoretically and experimentally with other decision procedures for the logic. Chapter 5 is a short investigation of embedding intuitionistic logic in Intuitionistic Linear Logic. A new embedding of intuitionistic logic in Intuitionistic Linear Logic is given. For the hereditary Harrop fragment of intuitionistic logic, this embedding induces the calculus MJ for intuitionistic logic. In Chapter 6 a 'permutation-free' calculus is given for Intuitionistic Linear Logic. Again, its proof-theoretic properties are investigated. The calculus is proved to be sound and complete with respect to a proof-theoretic semantics and (weak) cut- elimination is proved. Logic programming can be thought of as proof enumeration in constructive logics. All the proof enumeration calculi in this thesis have been developed with logic programming in mind. We discuss at the appropriate points the relationship between the calculi developed here and logic programming. Appendix A contains presentations of the logical calculi used and Appendix B contains the sets of benchmark formulae used in Chapter 4

    Gluing together proof environments: Canonical extensions of LF type theories featuring locks

    Get PDF
    © F. Honsell, L. Liquori, P. Maksimovic, I. Scagnetto This work is licensed under the Creative Commons Attribution License.We present two extensions of the LF Constructive Type Theory featuring monadic locks. A lock is a monadic type construct that captures the effect of an external call to an oracle. Such calls are the basic tool for gluing together diverse Type Theories and proof development environments. The oracle can be invoked either to check that a constraint holds or to provide a suitable witness. The systems are presented in the canonical style developed by the CMU School. The first system, CLLF/p,is the canonical version of the system LLF p, presented earlier by the authors. The second system, CLLF p?, features the possibility of invoking the oracle to obtain a witness satisfying a given constraint. We discuss encodings of Fitch-Prawitz Set theory, call-by-value λ-calculi, and systems of Light Linear Logic. Finally, we show how to use Fitch-Prawitz Set Theory to define a type system that types precisely the strongly normalizing terms

    Bialgebraic Semantics for Logic Programming

    Get PDF
    Bialgebrae provide an abstract framework encompassing the semantics of different kinds of computational models. In this paper we propose a bialgebraic approach to the semantics of logic programming. Our methodology is to study logic programs as reactive systems and exploit abstract techniques developed in that setting. First we use saturation to model the operational semantics of logic programs as coalgebrae on presheaves. Then, we make explicit the underlying algebraic structure by using bialgebrae on presheaves. The resulting semantics turns out to be compositional with respect to conjunction and term substitution. Also, it encodes a parallel model of computation, whose soundness is guaranteed by a built-in notion of synchronisation between different threads

    A proof-theoretic analysis of the classical propositional matrix method

    Get PDF
    The matrix method, due to Bibel and Andrews, is a proof procedure designed for automated theorem-proving. We show that underlying this method is a fully structured combinatorial model of conventional classical proof theory. © 2012 The Author, 2012. Published by Oxford University Press

    Elementary characterisation of small quantaloids of closed cribles

    Get PDF
    Each small site (C,J) determines a small quantaloid of closed cribles R(C,J). We prove that a small quantaloid Q is equivalent to R(C,J) for some small site (C,J) if and only if there exists a (necessarily subcanonical) Grothendieck topology J on the category Map(Q) of left adjoints in Q such that Q=R(Map(Q),J), if and only if Q is locally localic, map- discrete, weakly tabular and weakly modular. If moreover coreflexives split in Q, then the topology J on Map(Q) is the canonical topology.Comment: 14 pages, final versio
    • …
    corecore