56 research outputs found

    On αrγs(k)-perfect graphs

    Get PDF
    AbstractFor some integer k⩾0 and two graph parameters π and τ, a graph G is called πτ(k)-perfect, if π(H)−τ(H)⩽k for every induced subgraph H of G. For r⩾1 let αr and γr denote the r-(distance)-independence and r-(distance)-domination number, respectively. In (J. Graph Theory 32 (1999) 303–310), I. Zverovich gave an ingenious complete characterization of α1γ1(k)-perfect graphs in terms of forbidden induced subgraphs. In this paper we study αrγs(k)-perfect graphs for r,s⩾1. We prove several properties of minimal αrγs(k)-imperfect graphs. Generalizing Zverovich's main result in (J. Graph Theory 32 (1999) 303–310), we completely characterize α2r−1γr(k)-perfect graphs for r⩾1. Furthermore, we characterize claw-free α2γ2(k)-perfect graphs

    On the Domination Chain of m by n Chess Graphs

    Get PDF
    A survey of the six domination chain parameters for both square and rectangular chess boards are discussed

    A semi-induced subgraph characterization of upper domination perfect graphs

    Get PDF
    Let β(G) and Γ(G) be the independence number and the upper domination number of a graph G, respectively. A graph G is called Γ-perfect if β(H) = Γ(H), for every induced subgraph H of G. The class of Γ-perfect graphs generalizes such well-known classes of graphs as strongly perfect graphs, absorbantly perfect graphs, and circular arc graphs. In this article, we present a characterization of Γ-perfect graphs in terms of forbidden semi-induced subgraphs. Key roles in the characterization are played by the odd prism and the even Möbius ladder, where the prism and the Möbius ladder are well-known 3-regular graphs [2]. Using the semi-induced subgraph characterization, we obtain a characterization of K 1.3-free Γ-perfect graphs in terms of forbidden induced subgraphs. © 1999 John Wiley & Sons, Inc

    Ramsey-type results on parameters related to domination

    Full text link
    There is a philosophy to discover Ramsey-type theorem: given a graph parameter μ\mu, characterize the family \HH of graphs which satisfies that every \HH-free graph GG has bounded parameter μ\mu. The classical Ramsey's theorem deals the parameter μ\mu as the number of vertices. It also has a corresponding connected version. This Ramsey-type problem on domination number has been solved by Furuya. We will use this result to handle more parameters related to domination.Comment: 12 pages, 1 figures

    FROM IRREDUNDANCE TO ANNIHILATION: A BRIEF OVERVIEW OF SOME DOMINATION PARAMETERS OF GRAPHS

    Get PDF
    Durante los últimos treinta años, el concepto de dominación en grafos ha levantado un interés impresionante. Una bibliografía reciente sobre el tópico contiene más de 1200 referencias y el número de definiciones nuevas está creciendo continuamente. En vez de intentar dar un catálogo de todas ellas, examinamos las nociones más clásicas e importantes (tales como dominación independiente, dominación irredundante, k-cubrimientos, conjuntos k-dominantes, conjuntos Vecindad Perfecta, ...) y algunos de los resultados más significativos.   PALABRAS CLAVES: Teoría de grafos, Dominación.   ABSTRACT During the last thirty years, the concept of domination in graphs has generated an impressive interest. A recent bibliography on the subject contains more than 1200 references and the number of new definitions is continually increasing. Rather than trying to give a catalogue of all of them, we survey the most classical and important notions (as independent domination, irredundant domination, k-coverings, k-dominating sets, Perfect Neighborhood sets, ...) and some of the most significant results.   KEY WORDS: Graph theory, Domination

    On a conjecture about inverse domination in graphs

    Get PDF
    • …
    corecore