2,358 research outputs found

    On topological relaxations of chromatic conjectures

    Get PDF
    There are several famous unsolved conjectures about the chromatic number that were relaxed and already proven to hold for the fractional chromatic number. We discuss similar relaxations for the topological lower bound(s) of the chromatic number. In particular, we prove that such a relaxed version is true for the Behzad-Vizing conjecture and also discuss the conjectures of Hedetniemi and of Hadwiger from this point of view. For the latter, a similar statement was already proven in an earlier paper of the first author with G. Tardos, our main concern here is that the so-called odd Hadwiger conjecture looks much more difficult in this respect. We prove that the statement of the odd Hadwiger conjecture holds for large enough Kneser graphs and Schrijver graphs of any fixed chromatic number

    On prisms, M\"obius ladders and the cycle space of dense graphs

    Full text link
    For a graph X, let f_0(X) denote its number of vertices, d(X) its minimum degree and Z_1(X;Z/2) its cycle space in the standard graph-theoretical sense (i.e. 1-dimensional cycle group in the sense of simplicial homology theory with Z/2-coefficients). Call a graph Hamilton-generated if and only if the set of all Hamilton circuits is a Z/2-generating system for Z_1(X;Z/2). The main purpose of this paper is to prove the following: for every s > 0 there exists n_0 such that for every graph X with f_0(X) >= n_0 vertices, (1) if d(X) >= (1/2 + s) f_0(X) and f_0(X) is odd, then X is Hamilton-generated, (2) if d(X) >= (1/2 + s) f_0(X) and f_0(X) is even, then the set of all Hamilton circuits of X generates a codimension-one subspace of Z_1(X;Z/2), and the set of all circuits of X having length either f_0(X)-1 or f_0(X) generates all of Z_1(X;Z/2), (3) if d(X) >= (1/4 + s) f_0(X) and X is square bipartite, then X is Hamilton-generated. All these degree-conditions are essentially best-possible. The implications in (1) and (2) give an asymptotic affirmative answer to a special case of an open conjecture which according to [European J. Combin. 4 (1983), no. 3, p. 246] originates with A. Bondy.Comment: 33 pages; 5 figure

    The number of independent sets in a graph with small maximum degree

    Full text link
    Let ind(G){\rm ind}(G) be the number of independent sets in a graph GG. We show that if GG has maximum degree at most 55 then ind(G)2iso(G)uvE(G)ind(Kd(u),d(v))1d(u)d(v) {\rm ind}(G) \leq 2^{{\rm iso}(G)} \prod_{uv \in E(G)} {\rm ind}(K_{d(u),d(v)})^{\frac{1}{d(u)d(v)}} (where d()d(\cdot) is vertex degree, iso(G){\rm iso}(G) is the number of isolated vertices in GG and Ka,bK_{a,b} is the complete bipartite graph with aa vertices in one partition class and bb in the other), with equality if and only if each connected component of GG is either a complete bipartite graph or a single vertex. This bound (for all GG) was conjectured by Kahn. A corollary of our result is that if GG is dd-regular with 1d51 \leq d \leq 5 then ind(G)(2d+11)V(G)2d, {\rm ind}(G) \leq \left(2^{d+1}-1\right)^\frac{|V(G)|}{2d}, with equality if and only if GG is a disjoint union of V(G)/2dV(G)/2d copies of Kd,dK_{d,d}. This bound (for all dd) was conjectured by Alon and Kahn and recently proved for all dd by the second author, without the characterization of the extreme cases. Our proof involves a reduction to a finite search. For graphs with maximum degree at most 33 the search could be done by hand, but for the case of maximum degree 44 or 55, a computer is needed.Comment: Article will appear in {\em Graphs and Combinatorics

    Triangle-Intersecting Families of Graphs

    Full text link
    A family of graphs F is said to be triangle-intersecting if for any two graphs G,H in F, the intersection of G and H contains a triangle. A conjecture of Simonovits and Sos from 1976 states that the largest triangle-intersecting families of graphs on a fixed set of n vertices are those obtained by fixing a specific triangle and taking all graphs containing it, resulting in a family of size (1/8) 2^{n choose 2}. We prove this conjecture and some generalizations (for example, we prove that the same is true of odd-cycle-intersecting families, and we obtain best possible bounds on the size of the family under different, not necessarily uniform, measures). We also obtain stability results, showing that almost-largest triangle-intersecting families have approximately the same structure.Comment: 43 page

    Distance colouring without one cycle length

    Get PDF
    We consider distance colourings in graphs of maximum degree at most dd and how excluding one fixed cycle length \ell affects the number of colours required as dd\to\infty. For vertex-colouring and t1t\ge 1, if any two distinct vertices connected by a path of at most tt edges are required to be coloured differently, then a reduction by a logarithmic (in dd) factor against the trivial bound O(dt)O(d^t) can be obtained by excluding an odd cycle length 3t\ell \ge 3t if tt is odd or by excluding an even cycle length 2t+2\ell \ge 2t+2. For edge-colouring and t2t\ge 2, if any two distinct edges connected by a path of fewer than tt edges are required to be coloured differently, then excluding an even cycle length 2t\ell \ge 2t is sufficient for a logarithmic factor reduction. For t2t\ge 2, neither of the above statements are possible for other parity combinations of \ell and tt. These results can be considered extensions of results due to Johansson (1996) and Mahdian (2000), and are related to open problems of Alon and Mohar (2002) and Kaiser and Kang (2014).Comment: 14 pages, 1 figur

    Neighborhood complexes and Kronecker double coverings

    Full text link
    The neighborhood complex N(G)N(G) is a simplicial complex assigned to a graph GG whose connectivity gives a lower bound for the chromatic number of GG. We show that if the Kronecker double coverings of graphs are isomorphic, then their neighborhood complexes are isomorphic. As an application, for integers mm and nn greater than 2, we construct connected graphs GG and HH such that N(G)N(H)N(G) \cong N(H) but χ(G)=m\chi(G) = m and χ(H)=n\chi(H) = n. We also construct a graph KGn,kKG_{n,k}' such that KGn,kKG_{n,k}' and the Kneser graph KGn,kKG_{n,k} are not isomorphic but their Kronecker double coverings are isomorphic.Comment: 10 pages. Some results concerning box complexes are deleted. to appear in Osaka J. Mat
    corecore