1,836 research outputs found

    Deduction modulo theory

    Get PDF
    This paper is a survey on Deduction modulo theor

    How to combine diagrammatic logics

    Full text link
    This paper is a submission to the contest: How to combine logics? at the World Congress and School on Universal Logic III, 2010. We claim that combining "things", whatever these things are, is made easier if these things can be seen as the objects of a category. We define the category of diagrammatic logics, so that categorical constructions can be used for combining diagrammatic logics. As an example, a combination of logics using an opfibration is presented, in order to study computational side-effects due to the evolution of the state during the execution of an imperative program

    E-Generalization Using Grammars

    Full text link
    We extend the notion of anti-unification to cover equational theories and present a method based on regular tree grammars to compute a finite representation of E-generalization sets. We present a framework to combine Inductive Logic Programming and E-generalization that includes an extension of Plotkin's lgg theorem to the equational case. We demonstrate the potential power of E-generalization by three example applications: computation of suggestions for auxiliary lemmas in equational inductive proofs, computation of construction laws for given term sequences, and learning of screen editor command sequences.Comment: 49 pages, 16 figures, author address given in header is meanwhile outdated, full version of an article in the "Artificial Intelligence Journal", appeared as technical report in 2003. An open-source C implementation and some examples are found at the Ancillary file

    Global semantic typing for inductive and coinductive computing

    Get PDF
    Inductive and coinductive types are commonly construed as ontological (Church-style) types, denoting canonical data-sets such as natural numbers, lists, and streams. For various purposes, notably the study of programs in the context of global semantics, it is preferable to think of types as semantical properties (Curry-style). Intrinsic theories were introduced in the late 1990s to provide a purely logical framework for reasoning about programs and their semantic types. We extend them here to data given by any combination of inductive and coinductive definitions. This approach is of interest because it fits tightly with syntactic, semantic, and proof theoretic fundamentals of formal logic, with potential applications in implicit computational complexity as well as extraction of programs from proofs. We prove a Canonicity Theorem, showing that the global definition of program typing, via the usual (Tarskian) semantics of first-order logic, agrees with their operational semantics in the intended model. Finally, we show that every intrinsic theory is interpretable in a conservative extension of first-order arithmetic. This means that quantification over infinite data objects does not lead, on its own, to proof-theoretic strength beyond that of Peano Arithmetic. Intrinsic theories are perfectly amenable to formulas-as-types Curry-Howard morphisms, and were used to characterize major computational complexity classes Their extensions described here have similar potential which has already been applied

    UTP2: Higher-Order Equational Reasoning by Pointing

    Full text link
    We describe a prototype theorem prover, UTP2, developed to match the style of hand-written proof work in the Unifying Theories of Programming semantical framework. This is based on alphabetised predicates in a 2nd-order logic, with a strong emphasis on equational reasoning. We present here an overview of the user-interface of this prover, which was developed from the outset using a point-and-click approach. We contrast this with the command-line paradigm that continues to dominate the mainstream theorem provers, and raises the question: can we have the best of both worlds?Comment: In Proceedings UITP 2014, arXiv:1410.785

    Consistency Decision

    Full text link
    The consistency formula for set theory can be stated in terms of the free-variables theory of primitive recursive maps. Free-variable p. r. predicates are decidable by set theory, main result here, built on recursive evaluation of p. r. map codes and soundness of that evaluation in set theoretical frame: internal p. r. map code equality is evaluated into set theoretical equality. So the free-variable consistency predicate of set theory is decided by set theory, {\omega}-consistency assumed. By G\"odel's second incompleteness theorem on undecidability of set theory's consistency formula by set theory under assumption of this {\omega}- consistency, classical set theory turns out to be {\omega}-inconsistent.Comment: arXiv admin note: text overlap with arXiv:1312.727

    Abstract Canonical Inference

    Full text link
    An abstract framework of canonical inference is used to explore how different proof orderings induce different variants of saturation and completeness. Notions like completion, paramodulation, saturation, redundancy elimination, and rewrite-system reduction are connected to proof orderings. Fairness of deductive mechanisms is defined in terms of proof orderings, distinguishing between (ordinary) "fairness," which yields completeness, and "uniform fairness," which yields saturation.Comment: 28 pages, no figures, to appear in ACM Trans. on Computational Logi

    The Algebraic Intersection Type Unification Problem

    Full text link
    The algebraic intersection type unification problem is an important component in proof search related to several natural decision problems in intersection type systems. It is unknown and remains open whether the algebraic intersection type unification problem is decidable. We give the first nontrivial lower bound for the problem by showing (our main result) that it is exponential time hard. Furthermore, we show that this holds even under rank 1 solutions (substitutions whose codomains are restricted to contain rank 1 types). In addition, we provide a fixed-parameter intractability result for intersection type matching (one-sided unification), which is known to be NP-complete. We place the algebraic intersection type unification problem in the context of unification theory. The equational theory of intersection types can be presented as an algebraic theory with an ACI (associative, commutative, and idempotent) operator (intersection type) combined with distributivity properties with respect to a second operator (function type). Although the problem is algebraically natural and interesting, it appears to occupy a hitherto unstudied place in the theory of unification, and our investigation of the problem suggests that new methods are required to understand the problem. Thus, for the lower bound proof, we were not able to reduce from known results in ACI-unification theory and use game-theoretic methods for two-player tiling games
    • …
    corecore