4,810 research outputs found

    Characterizing the quantum field theory vacuum using temporal Matrix Product states

    Full text link
    In this paper we construct the continuous Matrix Product State (MPS) representation of the vacuum of the field theory corresponding to the continuous limit of an Ising model. We do this by exploiting the observation made by Hastings and Mahajan in [Phys. Rev. A \textbf{91}, 032306 (2015)] that the Euclidean time evolution generates a continuous MPS along the time direction. We exploit this fact, together with the emerging Lorentz invariance at the critical point in order to identify the matrix product representation of the quantum field theory (QFT) vacuum with the continuous MPS in the time direction (tMPS). We explicitly construct the tMPS and check these statements by comparing the physical properties of the tMPS with those of the standard ground MPS. We furthermore identify the QFT that the tMPS encodes with the field theory emerging from taking the continuous limit of a weakly perturbed Ising model by a parallel field first analyzed by Zamolodchikov.Comment: The results presented in this paper are a significant expansion of arXiv:1608.0654

    Tensor Network Models of Unitary Black Hole Evaporation

    Full text link
    We introduce a general class of toy models to study the quantum information-theoretic properties of black hole radiation. The models are governed by a set of isometries that specify how microstates of the black hole at a given energy evolve to entangled states of a tensor product black-hole/radiation Hilbert space. The final state of the black hole radiation is conveniently summarized by a tensor network built from these isometries. We introduce a set of quantities generalizing the Renyi entropies that provide a complete set of bipartite/multipartite entanglement measures, and give a general formula for the average of these over initial black hole states in terms of the isometries defining the model. For models where the dimension of the final tensor product radiation Hilbert space is the same as that of the space of initial black hole microstates, the entanglement structure is universal, independent of the choice of isometries. In the more general case, we find that models which best capture the "information-free" property of black hole horizons are those whose isometries are tensors corresponding to states of tripartite systems with maximally mixed subsystems.Comment: 22 pages, 4 figure

    Spectral Theory for Networks with Attractive and Repulsive Interactions

    Full text link
    There is a wealth of applied problems that can be posed as a dynamical system defined on a network with both attractive and repulsive interactions. Some examples include: understanding synchronization properties of nonlinear oscillator;, the behavior of groups, or cliques, in social networks; the study of optimal convergence for consensus algorithm; and many other examples. Frequently the problems involve computing the index of a matrix, i.e. the number of positive and negative eigenvalues, and the dimension of the kernel. In this paper we consider one of the most common examples, where the matrix takes the form of a signed graph Laplacian. We show that the there are topological constraints on the index of the Laplacian matrix related to the dimension of a certain homology group. In certain situations, when the homology group is trivial, the index of the operator is rigid and is determined only by the topology of the network and is independent of the strengths of the interactions. In general these constraints give upper and lower bounds on the number of positive and negative eigenvalues, with the dimension of the homology group counting the number of eigenvalue crossings. The homology group also gives a natural decomposition of the dynamics into "fixed" degrees of freedom, whose index does not depend on the edge-weights, and an orthogonal set of "free" degrees of freedom, whose index changes as the edge weights change. We also present some numerical studies of this problem for large random matrices.Comment: 27 pages; 9 Figure

    The de Soto Effect

    Get PDF
    This paper explores the consequences of creating and improving property rights so thatfixed assets can be used as collateral. This has become a cause célèbre of Hernando de Sotowhose views are influential in debates about policy reform concerning property rights.Hence, we refer to the economic impact of such reforms as the de Soto effect. We explore thelogic of the argument for credit contracts, both in isolation, and in market equilibrium. Weshow that the impact will vary with the degree of market competition. Where competition isweak, it is possible that borrowers will be worse off when property rights improve. Wediscuss the implications for optimal policy and the political economy of policy reform.

    Calibrating Generative Models: The Probabilistic Chomsky-Schützenberger Hierarchy

    Get PDF
    A probabilistic Chomsky–Schützenberger hierarchy of grammars is introduced and studied, with the aim of understanding the expressive power of generative models. We offer characterizations of the distributions definable at each level of the hierarchy, including probabilistic regular, context-free, (linear) indexed, context-sensitive, and unrestricted grammars, each corresponding to familiar probabilistic machine classes. Special attention is given to distributions on (unary notations for) positive integers. Unlike in the classical case where the "semi-linear" languages all collapse into the regular languages, using analytic tools adapted from the classical setting we show there is no collapse in the probabilistic hierarchy: more distributions become definable at each level. We also address related issues such as closure under probabilistic conditioning

    Embedding and approximation theorems for echo state networks

    Get PDF
    Echo State Networks (ESNs) are a class of single layer recurrent neural networks that have enjoyed recent attention. In this paper we prove that a suitable ESN, trained on a series of measurements of an invertible dynamical system, induces a C1 map from the dynamical system's phase space to the ESN's reservoir space. We call this the Echo State Map. We then prove that the Echo State Map is generically an embedding with positive probability. Under additional mild assumptions, we further conjecture that the Echo State Map is almost surely an embedding. For sufficiently large, and specially structured, but still randomly generated ESNs, we prove that there exists a linear readout layer that allows the ESN to predict the next observation of a dynamical system arbitrarily well. Consequently, if the dynamical system under observation is structurally stable then the trained ESN will exhibit dynamics that are topologically conjugate to the future behaviour of the observed dynamical system. Our theoretical results connect the theory of ESNs to the delay-embedding literature for dynamical systems, and are supported by numerical evidence from simulations of the traditional Lorenz equations. The simulations confirm that, from a one dimensional observation function, an ESN can accurately infer a range of geometric and topological features of the dynamics such as the eigenvalues of equilibrium points, Lyapunov exponents and homology groups.Comment: 24 pages, 9 figure
    corecore