12,207 research outputs found

    Efficient Interpolation for the Theory of Arrays

    Full text link
    Existing techniques for Craig interpolation for the quantifier-free fragment of the theory of arrays are inefficient for computing sequence and tree interpolants: the solver needs to run for every partitioning (A,B)(A, B) of the interpolation problem to avoid creating ABAB-mixed terms. We present a new approach using Proof Tree Preserving Interpolation and an array solver based on Weak Equivalence on Arrays. We give an interpolation algorithm for the lemmas produced by the array solver. The computed interpolants have worst-case exponential size for extensionality lemmas and worst-case quadratic size otherwise. We show that these bounds are strict in the sense that there are lemmas with no smaller interpolants. We implemented the algorithm and show that the produced interpolants are useful to prove memory safety for C programs.Comment: long version of the paper at IJCAR 201

    Privacy-Preserving Secret Shared Computations using MapReduce

    Full text link
    Data outsourcing allows data owners to keep their data at \emph{untrusted} clouds that do not ensure the privacy of data and/or computations. One useful framework for fault-tolerant data processing in a distributed fashion is MapReduce, which was developed for \emph{trusted} private clouds. This paper presents algorithms for data outsourcing based on Shamir's secret-sharing scheme and for executing privacy-preserving SQL queries such as count, selection including range selection, projection, and join while using MapReduce as an underlying programming model. Our proposed algorithms prevent an adversary from knowing the database or the query while also preventing output-size and access-pattern attacks. Interestingly, our algorithms do not involve the database owner, which only creates and distributes secret-shares once, in answering any query, and hence, the database owner also cannot learn the query. Logically and experimentally, we evaluate the efficiency of the algorithms on the following parameters: (\textit{i}) the number of communication rounds (between a user and a server), (\textit{ii}) the total amount of bit flow (between a user and a server), and (\textit{iii}) the computational load at the user and the server.\BComment: IEEE Transactions on Dependable and Secure Computing, Accepted 01 Aug. 201

    Analyticity of The Ground State Energy For Massless Nelson Models

    Full text link
    We show that the ground state energy of the translationally invariant Nelson model, describing a particle coupled to a relativistic field of massless bosons, is an analytic function of the coupling constant and the total momentum. We derive an explicit expression for the ground state energy which is used to determine the effective mass.Comment: 33 pages, 1 figure, added a section on the calculation of the effective mas

    Cut-elimination for the modal Grzegorczyk logic via non-well-founded proofs

    Full text link
    We present a sequent calculus for the modal Grzegorczyk logic Grz allowing non-well-founded proofs and obtain the cut-elimination theorem for it by constructing a continuous cut-elimination mapping acting on these proofs.Comment: WOLLIC'17, 12 pages, 1 appendi

    Gromov-Monge quasi-metrics and distance distributions

    Full text link
    Applications in data science, shape analysis and object classification frequently require maps between metric spaces which preserve geometry as faithfully as possible. In this paper, we combine the Monge formulation of optimal transport with the Gromov-Hausdorff distance construction to define a measure of the minimum amount of geometric distortion required to map one metric measure space onto another. We show that the resulting quantity, called Gromov-Monge distance, defines an extended quasi-metric on the space of isomorphism classes of metric measure spaces and that it can be promoted to a true metric on certain subclasses of mm-spaces. We also give precise comparisons between Gromov-Monge distance and several other metrics which have appeared previously, such as the Gromov-Wasserstein metric and the continuous Procrustes metric of Lipman, Al-Aifari and Daubechies. Finally, we derive polynomial-time computable lower bounds for Gromov-Monge distance. These lower bounds are expressed in terms of distance distributions, which are classical invariants of metric measure spaces summarizing the volume growth of metric balls. In the second half of the paper, which may be of independent interest, we study the discriminative power of these lower bounds for simple subclasses of metric measure spaces. We first consider the case of planar curves, where we give a counterexample to the Curve Histogram Conjecture of Brinkman and Olver. Our results on plane curves are then generalized to higher dimensional manifolds, where we prove some sphere characterization theorems for the distance distribution invariant. Finally, we consider several inverse problems on recovering a metric graph from a collection of localized versions of distance distributions. Results are derived by establishing connections with concepts from the fields of computational geometry and topological data analysis.Comment: Version 2: Added many new results and improved expositio
    corecore