15,531 research outputs found

    KdV-type equations linked via Baecklund transformations: remarks and perspectives

    Full text link
    Third order nonlinear evolution equations, that is the Korteweg-deVries (KdV), modified Korteweg-deVries (mKdV) equation and other ones are considered: they all are connected via Baecklund transformations. These links can be depicted in a wide Baecklund Chart} which further extends the previous one constructed in [22]. In particular, the Baecklund transformation which links the mKdV equation to the KdV singularity manifold equation is reconsidered and the nonlinear equation for the KdV eigenfunction is shown to be linked to all the equations in the previously constructed Baecklund Chart. That is, such a Baecklund Chart is expanded to encompass the nonlinear equation for the KdV eigenfunctions [30], which finds its origin in the early days of the study of Inverse scattering Transform method, when the Lax pair for the KdV equation was constructed. The nonlinear equation for the KdV eigenfunctions is proved to enjoy a nontrivial invariance property. Furthermore, the hereditary recursion operator it admits [30 is recovered via a different method. Then, the results are extended to the whole hierarchy of nonlinear evolution equations it generates. Notably, the established links allow to show that also the nonlinear equation for the KdV eigenfunction is connected to the Dym equation since both such equations appear in the same Baecklund chart.Comment: 18 page

    Group invariance principles for causal generative models

    Full text link
    The postulate of independence of cause and mechanism (ICM) has recently led to several new causal discovery algorithms. The interpretation of independence and the way it is utilized, however, varies across these methods. Our aim in this paper is to propose a group theoretic framework for ICM to unify and generalize these approaches. In our setting, the cause-mechanism relationship is assessed by comparing it against a null hypothesis through the application of random generic group transformations. We show that the group theoretic view provides a very general tool to study the structure of data generating mechanisms with direct applications to machine learning.Comment: 16 pages, 6 figure

    Range unit root tests

    Get PDF
    Since the seminal paper by Dickey and Fuller in 1979, unit-root tests have conditioned the standard approaches to analyse time series with strong serial dependence, the focus being placed in the detection of eventual unit roots in an autorregresive model fitted to the series. In this paper we propose a completely different method to test for the type of "long-wave" patterns observed not only in unit root time series but also in series following more complex data generating mechanism. To this end, our testing device analyses the trend exhibit by the data, without imposing any constraint on the generating mechanism. We call our device the Range Unit Root (RUR) Test since it is constructed from running ranges of the series. These statistics allow a more general characterization of a strong serial dependence in the mean behavior, thus endowing our test with a number of desirable properties. Among these properties are the invariance to nonlinear monotonic transformations of the series and the robustness to the presence of level shifts and additive outliers. In addition, the RUR test outperforms the power of standard unit root tests on near-unit-root stationary time series

    A range unit root test

    Get PDF
    Since the seminal paper by Dickey and Fuller in 1979, unit-root tests have conditioned the standard approaches to analyse time series with strong serial dependence, the focus being placed in the detection of eventual unit roots in an autorregresive model fitted to the series. In this paper we propose a completely different method to test for the type of long-wave patterns observed not only in unit root time series but also in series following more complex data generating mechanisms. To this end, our testing device analyses the trend exhibit by the data, without imposing any constraint on the generating mechanism. We call our device the Range Unit Root (RUR) Test since it is constructed from running ranges of the series. These statistics allow a more general characterization of a strong serial dependence in the mean behavior, thus endowing our test with a number of desirable properties, among which its error-model-free asymptotic distribution, the invariance to nonlinear monotonic transformations of the series and the robustness to the presence of level shifts and additive outliers. In addition, the RUR test outperforms the power of standard unit root tests on near-unit-root stationary time series and is asymptotically immune to noise

    Uniqueness of Simultaneity

    Get PDF
    We consider the problem of uniqueness of certain simultaneity structures in flat spacetime. Absolute simultaneity is specified to be a non-trivial equivalence relation which is invariant under the automorphism group Aut of spacetime. Aut is taken to be the identity-component of either the inhomogeneous Galilei group or the inhomogeneous Lorentz group. Uniqueness of standard simultaneity in the first, and absence of any absolute simultaneity in the second case are demonstrated and related to certain group theoretic properties. Relative simultaneity with respect to an additional structure X on spacetime is specified to be a non-trivial equivalence relation which is invariant under the subgroup in Aut that stabilises X. Uniqueness of standard Einstein simultaneity is proven in the Lorentzian case when X is an inertial frame. We end by discussing the relation to previous work of others.Comment: LeTeX-2e, 18 pages, no figure

    Symmetry and History Quantum Theory: An analogue of Wigner's Theorem

    Get PDF
    The basic ingredients of the `consistent histories' approach to quantum theory are a space \UP of `history propositions' and a space \D of `decoherence functionals'. In this article we consider such history quantum theories in the case where \UP is given by the set of projectors \P(\V) on some Hilbert space \V. We define the notion of a `physical symmetry of a history quantum theory' (PSHQT) and specify such objects exhaustively with the aid of an analogue of Wigner's theorem. In order to prove this theorem we investigate the structure of \D, define the notion of an `elementary decoherence functional' and show that each decoherence functional can be expanded as a certain combination of these functionals. We call two history quantum theories that are related by a PSHQT `physically equivalent' and show explicitly, in the case of history quantum mechanics, how this notion is compatible with one that has appeared previously.Comment: To appear in Jour.Math.Phys.; 25 pages; Latex-documen
    • 

    corecore