1,671,015 research outputs found

### Proof Theory and Ordered Groups

Ordering theorems, characterizing when partial orders of a group extend to
total orders, are used to generate hypersequent calculi for varieties of
lattice-ordered groups (l-groups). These calculi are then used to provide new
proofs of theorems arising in the theory of ordered groups. More precisely: an
analytic calculus for abelian l-groups is generated using an ordering theorem
for abelian groups; a calculus is generated for l-groups and new decidability
proofs are obtained for the equational theory of this variety and extending
finite subsets of free groups to right orders; and a calculus for representable
l-groups is generated and a new proof is obtained that free groups are
orderable

### Proof theory of weak compactness

We show that the existence of a weakly compact cardinal over the
Zermelo-Fraenkel's set theory is proof-theoretically reducible to iterations of
Mostowski collapsings and Mahlo operations

### A Labelled Sequent Calculus for BBI: Proof Theory and Proof Search

We present a labelled sequent calculus for Boolean BI, a classical variant of
O'Hearn and Pym's logic of Bunched Implication. The calculus is simple, sound,
complete, and enjoys cut-elimination. We show that all the structural rules in
our proof system, including those rules that manipulate labels, can be
localised around applications of certain logical rules, thereby localising the
handling of these rules in proof search. Based on this, we demonstrate a free
variable calculus that deals with the structural rules lazily in a constraint
system. A heuristic method to solve the constraints is proposed in the end,
with some experimental results

### Proof Theory of Finite-valued Logics

The proof theory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valued logics. Proof theory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valued logics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop the proof theory of finite-valued first order logics in a general way, and to present some of the more important results in this area. In Systems covered are the resolution calculus, sequent calculus, tableaux, and natural deduction. This report is actually a template, from which all results can be specialized to particular logics

### Hipster: Integrating Theory Exploration in a Proof Assistant

This paper describes Hipster, a system integrating theory exploration with
the proof assistant Isabelle/HOL. Theory exploration is a technique for
automatically discovering new interesting lemmas in a given theory development.
Hipster can be used in two main modes. The first is exploratory mode, used for
automatically generating basic lemmas about a given set of datatypes and
functions in a new theory development. The second is proof mode, used in a
particular proof attempt, trying to discover the missing lemmas which would
allow the current goal to be proved. Hipster's proof mode complements and
boosts existing proof automation techniques that rely on automatically
selecting existing lemmas, by inventing new lemmas that need induction to be
proved. We show example uses of both modes

### A Coding Theoretic Study on MLL proof nets

Coding theory is very useful for real world applications. A notable example
is digital television. Basically, coding theory is to study a way of detecting
and/or correcting data that may be true or false. Moreover coding theory is an
area of mathematics, in which there is an interplay between many branches of
mathematics, e.g., abstract algebra, combinatorics, discrete geometry,
information theory, etc. In this paper we propose a novel approach for
analyzing proof nets of Multiplicative Linear Logic (MLL) by coding theory. We
define families of proof structures and introduce a metric space for each
family. In each family, 1. an MLL proof net is a true code element; 2. a proof
structure that is not an MLL proof net is a false (or corrupted) code element.
The definition of our metrics reflects the duality of the multiplicative
connectives elegantly. In this paper we show that in the framework one
error-detecting is possible but one error-correcting not. Our proof of the
impossibility of one error-correcting is interesting in the sense that a proof
theoretical property is proved using a graph theoretical argument. In addition,
we show that affine logic and MLL + MIX are not appropriate for this framework.
That explains why MLL is better than such similar logics.Comment: minor modification

### Proof mining in metric fixed point theory and ergodic theory

In this survey we present some recent applications of proof mining to the
fixed point theory of (asymptotically) nonexpansive mappings and to the
metastability (in the sense of Terence Tao) of ergodic averages in uniformly
convex Banach spaces.Comment: appeared as OWP 2009-05, Oberwolfach Preprints; 71 page

- …