490 research outputs found

    Enabling technologies and cyber-physical systems for mission-critical scenarios

    Get PDF
    Programa Oficial de Doutoramento en Tecnoloxías da Información e Comunicacións en Redes Móbiles . 5029P01[Abstract] Reliable transport systems, defense, public safety and quality assurance in the Industry 4.0 are essential in a modern society. In a mission-critical scenario, a mission failure would jeopardize human lives and put at risk some other assets whose impairment or loss would significantly harm society or business results. Even small degradations of the communications supporting the mission could have large and possibly dire consequences. On the one hand, mission-critical organizations wish to utilize the most modern, disruptive and innovative communication systems and technologies, and yet, on the other hand, need to comply with strict requirements, which are very different to those of non critical scenarios. The aim of this thesis is to assess the feasibility of applying emerging technologies like Internet of Things (IoT), Cyber-Physical Systems (CPS) and 4G broadband communications in mission-critical scenarios along three key critical infrastructure sectors: transportation, defense and public safety, and shipbuilding. Regarding the transport sector, this thesis provides an understanding of the progress of communications technologies used for railways since the implantation of Global System for Mobile communications-Railways (GSM-R). The aim of this work is to envision the potential contribution of Long Term Evolution (LTE) to provide additional features that GSM-R would never support. Furthermore, the ability of Industrial IoT for revolutionizing the railway industry and confront today's challenges is presented. Moreover, a detailed review of the most common flaws found in Radio Frequency IDentification (RFID) based IoT systems is presented, including the latest attacks described in the literature. As a result, a novel methodology for auditing security and reverse engineering RFID communications in transport applications is introduced. The second sector selected is driven by new operational needs and the challenges that arise from modern military deployments. The strategic advantages of 4G broadband technologies massively deployed in civil scenarios are examined. Furthermore, this thesis analyzes the great potential for applying IoT technologies to revolutionize modern warfare and provide benefits similar to those in industry. It identifies scenarios where defense and public safety could leverage better commercial IoT capabilities to deliver greater survivability to the warfighter or first responders, while reducing costs and increasing operation efficiency and effectiveness. The last part is devoted to the shipbuilding industry. After defining the novel concept of Shipyard 4.0, how a shipyard pipe workshop works and what are the requirements for building a smart pipe system are described in detail. Furthermore, the foundations for enabling an affordable CPS for Shipyards 4.0 are presented. The CPS proposed consists of a network of beacons that continuously collect information about the location of the pipes. Its design allows shipyards to obtain more information on the pipes and to make better use of it. Moreover, it is indicated how to build a positioning system from scratch in an environment as harsh in terms of communications as a shipyard, showing an example of its architecture and implementation.[Resumen] En la sociedad moderna, los sistemas de transporte fiables, la defensa, la seguridad pública y el control de la calidad en la Industria 4.0 son esenciales. En un escenario de misión crítica, el fracaso de una misión pone en peligro vidas humanas y en riesgo otros activos cuyo deterioro o pérdida perjudicaría significativamente a la sociedad o a los resultados de una empresa. Incluso pequeñas degradaciones en las comunicaciones que apoyan la misión podrían tener importantes y posiblemente terribles consecuencias. Por un lado, las organizaciones de misión crítica desean utilizar los sistemas y tecnologías de comunicación más modernos, disruptivos e innovadores y, sin embargo, deben cumplir requisitos estrictos que son muy diferentes a los relativos a escenarios no críticos. El objetivo principal de esta tesis es evaluar la viabilidad de aplicar tecnologías emergentes como Internet of Things (IoT), Cyber-Physical Systems (CPS) y comunicaciones de banda ancha 4G en escenarios de misión crítica en tres sectores clave de infraestructura crítica: transporte, defensa y seguridad pública, y construcción naval. Respecto al sector del transporte, esta tesis permite comprender el progreso de las tecnologías de comunicación en el ámbito ferroviario desde la implantación de Global System for Mobile communications-Railway (GSM-R). El objetivo de este trabajo es analizar la contribución potencial de Long Term Evolution (LTE) para proporcionar características adicionales que GSM-R nunca podría soportar. Además, se presenta la capacidad de la IoT industrial para revolucionar la industria ferroviaria y afrontar los retos actuales. Asimismo, se estudian con detalle las vulnerabilidades más comunes de los sistemas IoT basados en Radio Frequency IDentification (RFID), incluyendo los últimos ataques descritos en la literatura. Como resultado, se presenta una metodología innovadora para realizar auditorías de seguridad e ingeniería inversa de las comunicaciones RFID en aplicaciones de transporte. El segundo sector elegido viene impulsado por las nuevas necesidades operacionales y los desafíos que surgen de los despliegues militares modernos. Para afrontarlos, se analizan las ventajas estratégicas de las tecnologías de banda ancha 4G masivamente desplegadas en escenarios civiles. Asimismo, esta tesis analiza el gran potencial de aplicación de las tecnologías IoT para revolucionar la guerra moderna y proporcionar beneficios similares a los alcanzados por la industria. Se identifican escenarios en los que la defensa y la seguridad pública podrían aprovechar mejor las capacidades comerciales de IoT para ofrecer una mayor capacidad de supervivencia al combatiente o a los servicios de emergencias, a la vez que reduce los costes y aumenta la eficiencia y efectividad de las operaciones. La última parte se dedica a la industria de construcción naval. Después de definir el novedoso concepto de Astillero 4.0, se describe en detalle cómo funciona el taller de tubería de astillero y cuáles son los requisitos para construir un sistema de tuberías inteligentes. Además, se presentan los fundamentos para posibilitar un CPS asequible para Astilleros 4.0. El CPS propuesto consiste en una red de balizas que continuamente recogen información sobre la ubicación de las tuberías. Su diseño permite a los astilleros obtener más información sobre las tuberías y hacer un mejor uso de las mismas. Asimismo, se indica cómo construir un sistema de posicionamiento desde cero en un entorno tan hostil en términos de comunicaciones, mostrando un ejemplo de su arquitectura e implementación

    Railcar Wheel Impact Detection Utilizing Vibration-Based Wireless Onboard Condition Monitoring Modules

    Get PDF
    The current limitations in established rail transport condition monitoring methods have motivated the UTCRS railway research team at UTRGV to investigate a novel solution that can address these deficiencies through wired, onboard, and vibration-based analytics. Due to the emergence of the Internet of Things (IoT), the research team has now transitioned into developing wireless modules that take advantage of the rapid data processing and wireless communication features these systems possess. This has enabled UTCRS to partner with Hum Industrial Technology, Inc. to assist them in the development of their “Boomerang” wireless condition monitoring system. Designed to revolutionize the way the railway industry monitors rolling stock assets; the product is intended to provide preemptive maintenance scheduling through the continuous monitoring of railcar wheels and bearings. Ultimately, customers can save time, money, and avoid potentially catastrophic events. The wheel condition monitoring capabilities of the Boomerang were evaluated through various laboratory experiments that mimicked rail service operating conditions. The possible optimization of the system by incorporating a filter was also investigated. To further validate the efficacy of the prototype, a pilot field test consisting of 40 modules was conducted. The exhibited agreement between the laboratory and field pilot test data as well as the detection of a faulty wheelset demonstrates the functionality of the sensor module as a railcar wheel health monitoring device

    AI Knowledge Transfer from the University to Society

    Get PDF
    AI Knowledge Transfer from the University to Society: Applications in High-Impact Sectors brings together examples from the "Innovative Ecosystem with Artificial Intelligence for Andalusia 2025" project at the University of Seville, a series of sub-projects composed of research groups and different institutions or companies that explore the use of Artificial Intelligence in a variety of high-impact sectors to lead innovation and assist in decision-making. Key Features Includes chapters on health and social welfare, transportation, digital economy, energy efficiency and sustainability, agro-industry, and tourism Great diversity of authors, expert in varied sectors, belonging to powerful research groups from the University of Seville with proven experience in the transfer of knowledge to the productive sector and agents attached to the Andalucía TECH Campu

    AI Knowledge Transfer from the University to Society

    Get PDF
    AI Knowledge Transfer from the University to Society: Applications in High-Impact Sectors brings together examples from the "Innovative Ecosystem with Artificial Intelligence for Andalusia 2025" project at the University of Seville, a series of sub-projects composed of research groups and different institutions or companies that explore the use of Artificial Intelligence in a variety of high-impact sectors to lead innovation and assist in decision-making. Key Features Includes chapters on health and social welfare, transportation, digital economy, energy efficiency and sustainability, agro-industry, and tourism Great diversity of authors, expert in varied sectors, belonging to powerful research groups from the University of Seville with proven experience in the transfer of knowledge to the productive sector and agents attached to the Andalucía TECH Campu

    Sustainable Mobility and Transport

    Get PDF
    This Special Issue is dedicated to sustainable mobility and transport, with a special focus on technological advancements. Global transport systems are significant sources of air, land, and water emissions. A key motivator for this Special Issue was the diversity and complexity of mitigating transport emissions and industry adaptions towards increasingly stricter regulation. Originally, the Special Issue called for papers devoted to all forms of mobility and transports. The papers published in this Special Issue cover a wide range of topics, aiming to increase understanding of the impacts and effects of mobility and transport in working towards sustainability, where most studies place technological innovations at the heart of the matter. The goal of the Special Issue is to present research that focuses, on the one hand, on the challenges and obstacles on a system-level decision making of clean mobility, and on the other, on indirect effects caused by these changes

    Major Sponsored Programs and Faculty Awards for Research and Creative Activity: July 1, 2010 – June 30, 2011

    Get PDF
    This tenth annual “Major Sponsored Programs and Faculty Awards for Research and Creative Activity” booklet highlights the successes of University of Nebraska–Lincoln faculty during the fiscal year July 1, 2010-June 30, 2011. It lists the funding sources, projects and investigators on major grants and sponsored program awards received during the year; published books and scholarship; fellowships and other recognitions; startups and intellectual property licenses; and performances and exhibitions in the fine and performing arts. This impressive list grows each year and I am pleased to present evidence of our faculty’s accomplishments. Large grants in a diverse range of fields—from water, food, energy and human health, to math and science education, digital humanities and nanotechnology— enable UNL faculty to address important challenges facing Nebraska, our nation and the world. Our external research funding reflects their achievements, reaching a total of $132.2 million in fiscal year 2011. With an eye to the future, we are enhancing and expanding our strengths by vigorously pursuing interdisciplinary initiatives necessary for tackling today’s complex issues. We are cultivating innovative collaborations across disciplinary, institutional, state and national boundaries to solve global challenges, address national needs and enhance Nebraska’s economy. And we are partnering with business, industry and entrepreneurs to ensure that we maximize the social, economic and environmental benefits of UNL research. I invite you to read about our faculty’s accomplishments in this booklet and envision the power of UNL’s innovative and collaborative research, scholarship and creative activity to solve problems and create opportunities for Nebraska, the nation and the world. Thank you for your interest in and support for research and creative activity at the University of Nebraska–Lincoln! Prem S. Paul, Vice Chancellor for Research and Economic Developmen

    Emerging Informatics

    Get PDF
    The book on emerging informatics brings together the new concepts and applications that will help define and outline problem solving methods and features in designing business and human systems. It covers international aspects of information systems design in which many relevant technologies are introduced for the welfare of human and business systems. This initiative can be viewed as an emergent area of informatics that helps better conceptualise and design new world-class solutions. The book provides four flexible sections that accommodate total of fourteen chapters. The section specifies learning contexts in emerging fields. Each chapter presents a clear basis through the problem conception and its applicable technological solutions. I hope this will help further exploration of knowledge in the informatics discipline

    Harnessing Knowledge, Innovation and Competence in Engineering of Mission Critical Systems

    Get PDF
    This book explores the critical role of acquisition, application, enhancement, and management of knowledge and human competence in the context of the largely digital and data/information dominated modern world. Whilst humanity owes much of its achievements to the distinct capability to learn from observation, analyse data, gain insights, and perceive beyond original realities, the systematic treatment of knowledge as a core capability and driver of success has largely remained the forte of pedagogy. In an increasingly intertwined global community faced with existential challenges and risks, the significance of knowledge creation, innovation, and systematic understanding and treatment of human competence is likely to be humanity's greatest weapon against adversity. This book was conceived to inform the decision makers and practitioners about the best practice pertinent to many disciplines and sectors. The chapters fall into three broad categories to guide the readers to gain insight from generic fundamentals to discipline-specific case studies and of the latest practice in knowledge and competence management
    corecore