72 research outputs found

    Continuous 3D Multi-Channel Sign Language Production via Progressive Transformers and Mixture Density Networks

    Full text link
    Sign languages are multi-channel visual languages, where signers use a continuous 3D space to communicate.Sign Language Production (SLP), the automatic translation from spoken to sign languages, must embody both the continuous articulation and full morphology of sign to be truly understandable by the Deaf community. Previous deep learning-based SLP works have produced only a concatenation of isolated signs focusing primarily on the manual features, leading to a robotic and non-expressive production. In this work, we propose a novel Progressive Transformer architecture, the first SLP model to translate from spoken language sentences to continuous 3D multi-channel sign pose sequences in an end-to-end manner. Our transformer network architecture introduces a counter decoding that enables variable length continuous sequence generation by tracking the production progress over time and predicting the end of sequence. We present extensive data augmentation techniques to reduce prediction drift, alongside an adversarial training regime and a Mixture Density Network (MDN) formulation to produce realistic and expressive sign pose sequences. We propose a back translation evaluation mechanism for SLP, presenting benchmark quantitative results on the challenging PHOENIX14T dataset and setting baselines for future research. We further provide a user evaluation of our SLP model, to understand the Deaf reception of our sign pose productions

    Low-Resource Unsupervised NMT:Diagnosing the Problem and Providing a Linguistically Motivated Solution

    Get PDF
    Unsupervised Machine Translation hasbeen advancing our ability to translatewithout parallel data, but state-of-the-artmethods assume an abundance of mono-lingual data. This paper investigates thescenario where monolingual data is lim-ited as well, finding that current unsuper-vised methods suffer in performance un-der this stricter setting. We find that theperformance loss originates from the poorquality of the pretrained monolingual em-beddings, and we propose using linguis-tic information in the embedding train-ing scheme. To support this, we look attwo linguistic features that may help im-prove alignment quality: dependency in-formation and sub-word information. Us-ing dependency-based embeddings resultsin a complementary word representationwhich offers a boost in performance ofaround 1.5 BLEU points compared to stan-dardWORD2VECwhen monolingual datais limited to 1 million sentences per lan-guage. We also find that the inclusion ofsub-word information is crucial to improv-ing the quality of the embedding

    On the integration of linguistic features into statistical and neural machine translation

    Get PDF
    Recent years have seen an increased interest in machine translation technologies and applications due to an increasing need to overcome language barriers in many sectors. New machine translations technologies are emerging rapidly and with them, bold claims of achieving human parity such as: (i) the results produced approach "accuracy achieved by average bilingual human translators [on some test sets]" (Wu et al., 2017b) or (ii) the "translation quality is at human parity when compared to professional human translators" (Hassan et al., 2018) have seen the light of day (LĂ€ubli et al., 2018). Aside from the fact that many of these papers craft their own definition of human parity, these sensational claims are often not supported by a complete analysis of all aspects involved in translation. Establishing the discrepancies between the strengths of statistical approaches to machine translation and the way humans translate has been the starting point of our research. By looking at machine translation output and linguistic theory, we were able to identify some remaining issues. The problems range from simple number and gender agreement errors to more complex phenomena such as the correct translation of aspectual values and tenses. Our experiments confirm, along with other studies (Bentivogli et al., 2016), that neural machine translation has surpassed statistical machine translation in many aspects. However, some problems remain and others have emerged. We cover a series of problems related to the integration of specific linguistic features into statistical and neural machine translation, aiming to analyse and provide a solution to some of them. Our work focuses on addressing three main research questions that revolve around the complex relationship between linguistics and machine translation in general. By taking linguistic theory as a starting point we examine to what extent theory is reflected in the current systems. We identify linguistic information that is lacking in order for automatic translation systems to produce more accurate translations and integrate additional features into the existing pipelines. We identify overgeneralization or 'algorithmic bias' as a potential drawback of neural machine translation and link it to many of the remaining linguistic issues
    • 

    corecore