909 research outputs found

    Overview of technologies for building robots in the classroom

    Get PDF
    This paper aims to give an overview of technologies that can be used to implement robotics within an educational context. We discuss complete robotics systems as well as projects that implement only certain elements of a robotics system, such as electronics, hardware, or software. We believe that Maker Movement and DIY trends offers many new opportunities for teaching and feel that they will become much more prominent in the future. Products and projects discussed in this paper are: Mindstorms, Vex, Arduino, Dwengo, Raspberry Pi, MakeBlock, OpenBeam, BitBeam, Scratch, Blockly and ArduBlock

    Enhancing Civil Engineering teaching through 3D Computer Aided Design

    Get PDF
    3D interpretation of 2D drawing is not easy for most of the Civil Engineering first-year students. Some do it naturally but most need to be trained to master this skill. In this paper, the implemented teaching methodologies aiming to facilitate the acquisition of three-dimensional project visualization skills are presented. These methodologies were developed during the last two years targeting first-year Civil Engineering students at the University of Beira Interior (Portugal). After a first contact with 2D project representation through manual drawing, students progressively elaborate computer-aided design (CAD) project starting with simple 2D drawings and culminating with a 3D project of a pre-existing building. Students are also motivated to improve their 3D graphic representation skills through a classroom contest where the winning project is printed in 3D. The training in 2D and 3D graphic representation is complemented during the second year with several in situ surveys and computer-aided drawing of topographic data. This approach proved to be very interesting for competence acquisition, qualifying students for a better 3D representation and interpretation. Students also found this methodology to be motivating.info:eu-repo/semantics/publishedVersio

    Designettes: An Approach to Multidisciplinary Engineering Design Education

    Get PDF
    Design and other fundamental topics in engineering are often isolated to dedicated courses. An opportunity exists to foster a culture of engineering design and multidisciplinary problem solving throughout the curriculum. Designettes, charettelike design challenges, are rapid and creative learning tools that enable educators to integrate design learning in a single class, across courses, across terms, and across disciplines. When two or more courses join together in a designette, a multidisciplinary learning activity occurs; multiple subjects are integrated and applied to open-ended problems and grand challenges. This practice helps foster a culture of design, and enables the introduction of multidisciplinary design challenges. Studies at the Singapore University of Technology and Design (SUTD) demonstrate learning of engineering subject matter in a bio-inspired robotics designette (MechAnimal), an interactive musical circuit designette, and an automated milk delivery (AutoMilk) designette. Each challenge combines problem clarification, concept generation, and prototyping with subject content such as circuits, biology, thermodynamics, differential equations, or software with controls. From pre- and postsurveys of students, designettes are found to increase students' understanding of engineering concepts. From 321 third-semester students, designettes were found to increase students' perceptions of their ability to solve multidisciplinary problems

    Evolution and implementation of CDIO initiatives at ETSII-UPM

    Get PDF
    The School of Industrial Engineering at Universidad Politécnica de Madrid (ETSII-UPM) has been promoting student-centred teaching-learning activities, according to the aims of the Bologna Declaration, well before the official establishment of the European Area of Higher Education. Such student-centred teaching-learning experiences led us to the conviction that project based learning is rewarding, both for students and academics, and should be additionally promoted in our new engineering programmes, adapted to the Grade-Master structure. The level of commitment of our teachers with these activities is noteworthy, as the teaching innovation experiences carried out in the last ten years have led to the foundation of 17 Teaching Innovation Groups at ETSII-UPM, hence leading the ranking of teaching innovation among all UPM centres. Among interesting CDIO activities our students have taken part in especially complex projects, including the Formula Student, linked to the complete development of a competition car, and the Cybertech competition, aimed at the design, construction and operation of robots for different purposes. Additional project-based learning teamwork activities have been linked to toy design, to the development of medical devices, to the implementation of virtual laboratories, to the design of complete industrial installations and factories, among other activities detailed in present study. The implementation of Bologna process will culminate at ETSII-UPM with the beginning of the Master’s Degree in Industrial Engineering, in academic year 2014-15. The program has been successfully approved by the Spanish Agency for Accreditation (ANECA), with the inclusion of a set of subjects based upon the CDIO methodology denominated generally “INGENIA”, linked to the Spanish “ingeniar” (to provide ingenious solutions), also related etymologically in Spanish with “ingeniero”, engineer. INGENIA students will live through the complete development process of a complex product or system and there will be different kind of projects covering most of the engineering majors at ETSII-UPM

    Reviews

    Get PDF
    Apolog

    A case study for project work effects in creativity

    Get PDF

    Foreword

    Get PDF

    Educate for the future:PBL, Sustainability and Digitalisation 2021

    Get PDF

    A practical approach to cellular communications standards education

    Get PDF
    The cellular communications industry is steadily growing and expanding to solve the needs of governments, businesses and communities. Standards are fundamental to enable cooperation while promoting competition. The companies involved contribute and agree on appropriate technical specifications to ensure diversity, compatibility and facilitate worldwide commercial deployment and evolution. The specifications of cellular communications standards are extensive, complex and intentionally incomplete to spur innovation and differentiation. This makes standards education a difficult endeavor, but it is highly demanded by the wireless industry. This paper describes a practical approach to teaching cellular communications standards. Our methodology leverages software-defined radio technology and uses the abstraction layer and operating environment (ALOE) to provide a practical learning environment that facilitates developing many of the needed technical and soft skills without the inherent difficulty and cost associated with radio frequency components and regulation. We define six learning stages that assimilate the standardization process and identify key learning objectives for each. We discuss our experiences when employing the proposed methodology at Barcelona Tech in Spain, compare the approach with an equivalent class at Virginia Tech in the US and make the following observations: (1) The complexity of standards need to be abstracted and presented in a form suitable for a given class. (2) Educating about cellular communications standards is most effective when students are immersed in the process. (3) Hands-on activities need careful preparation and close guidance.Peer ReviewedPostprint (published version
    corecore