1,206 research outputs found

    Techno-Economic Analysis Of LED Lighting: A Case Study In Utem’s Faculty Building

    Get PDF
    This paper examines the feasibility of adopting LED lamp in replacing the conventional fluorescent lamp. Analysis and comparison have been carried out on the two lighting systems in terms of electrical and photometrical performance. A case study on UTeM’s building has also been presented, which focuses on the economic evaluation. In addition, various lighting energy saving strategies have been proposed. The economic benefits of the respective energy saving measures have been successfully quantified. The study suggests that LED tubes has great potential to replace fluorescent lamps, mainly driven by the cost savings

    A Microscopic Simulation Laboratory for Evaluation of Off-street Parking Systems

    Get PDF
    The parking industry produces an enormous amount of data every day that, properly analyzed, will change the way the industry operates. The collected data form patterns that, in most cases, would allow parking operators and property owners to better understand how to maximize revenue and decrease operating expenses and support the decisions such as how to set specific parking policies (e.g. electrical charging only parking space) to achieve the sustainable and eco-friendly parking. However, there lacks an intelligent tool to assess the layout design and operational performance of parking lots to reduce the externalities and increase the revenue. To address this issue, this research presents a comprehensive agent-based framework for microscopic off-street parking system simulation. A rule-based parking simulation logic programming model is formulated. The proposed simulation model can effectively capture the behaviors of drivers and pedestrians as well as spatial and temporal interactions of traffic dynamics in the parking system. A methodology for data collection, processing, and extraction of user behaviors in the parking system is also developed. A Long-Short Term Memory (LSTM) neural network is used to predict the arrival and departure of the vehicles. The proposed simulator is implemented in Java and a Software as a Service (SaaS) graphic user interface is designed to analyze and visualize the simulation results. This study finds the active capacity of the parking system, which is defined as the largest number of actively moving vehicles in the parking system under the facility layout. In the system application of the real world testbed, the numerical tests show (a) the smart check-in device has marginal benefits in vehicle waiting time; (b) the flexible pricing policy may increase the average daily revenue if the elasticity of the price is not involved; (c) the number of electrical charging only spots has a negative impact on the performance of the parking facility; and (d) the rear-in only policy may increase the duration of parking maneuvers and reduce the efficiency during the arrival rush hour. Application of the developed simulation system using a real-world case demonstrates its capability of providing informative quantitative measures to support decisions in designing, maintaining, and operating smart parking facilities

    Overview of database projects

    Get PDF
    The use of entity and object oriented data modeling techniques for managing Computer Aided Design (CAD) is explored

    Description Logic for Scene Understanding at the Example of Urban Road Intersections

    Get PDF
    Understanding a natural scene on the basis of external sensors is a task yet to be solved by computer algorithms. The present thesis investigates the suitability of a particular family of explicit, formal representation and reasoning formalisms for this task, which are subsumed under the term Description Logic

    Cognition-enabled robotic wiping: Representation, planning, execution, and interpretation

    Get PDF
    Advanced cognitive capabilities enable humans to solve even complex tasks by representing and processing internal models of manipulation actions and their effects. Consequently, humans are able to plan the effect of their motions before execution and validate the performance afterwards. In this work, we derive an analog approach for robotic wiping actions which are fundamental for some of the most frequent household chores including vacuuming the floor, sweeping dust, and cleaning windows. We describe wiping actions and their effects based on a qualitative particle distribution model. This representation enables a robot to plan goal-oriented wiping motions for the prototypical wiping actions of absorbing, collecting and skimming. The particle representation is utilized to simulate the task outcome before execution and infer the real performance afterwards based on haptic perception. This way, the robot is able to estimate the task performance and schedule additional motions if necessary. We evaluate our methods in simulated scenarios, as well as in real experiments with the humanoid service robot Rollin’ Justin

    Learning relational event models from video

    Get PDF
    Event models obtained automatically from video can be used in applications ranging from abnormal event detection to content based video retrieval. When multiple agents are involved in the events, characterizing events naturally suggests encoding interactions as relations. Learning event models from this kind of relational spatio-temporal data using relational learning techniques such as Inductive Logic Programming (ILP) hold promise, but have not been successfully applied to very large datasets which result from video data. In this paper, we present a novel framework REMIND (Relational Event Model INDuction) for supervised relational learning of event models from large video datasets using ILP. Efficiency is achieved through the learning from interpretations setting and using a typing system that exploits the type hierarchy of objects in a domain. The use of types also helps prevent over generalization. Furthermore, we also present a type-refining operator and prove that it is optimal. The learned models can be used for recognizing events from previously unseen videos. We also present an extension to the framework by integrating an abduction step that improves the learning performance when there is noise in the input data. The experimental results on several hours of video data from two challenging real world domains (an airport domain and a physical action verbs domain) suggest that the techniques are suitable to real world scenarios

    Proceedings of the GPEA Polytechnic Summit 2022: Session Papers

    Get PDF
    Welcome to GPEA PS 2022 Each year the Polytechnic Summit assembles leaders, influencers and contributors who shape the future of polytechnic education. The Polytechnic Summit provides a forum to enable opportunities for collaboration and partnerships and for participants to focus on innovation in curriculum and pedagogy, to share best practices in active and applied learning, and discuss practice-based research to enhance student learning. This year a view on the aspects of applied research will be added. How to conduct research in a teaching first environment and make use of this. Which characteristics of applied research are important to be used in teaching and vice versa?The Summit will – once again - also provide an opportunity to examine the challenges and opportunities presented by COVID-19 and will offer us all an opportunity to explore the ways in which we can collaborate more effectively using our new-found virtual engagement skills and prepare for a hybrid future. PS2022 Themes: Design (Programmes, Curriculum, Organisation);Practice-Based Learning;Applied Research; Employability and Graduate Skills; Internationalisation, Global Teaching & Collaboration and Sustainability Theme

    Cognitive Reasoning for Compliant Robot Manipulation

    Get PDF
    Physically compliant contact is a major element for many tasks in everyday environments. A universal service robot that is utilized to collect leaves in a park, polish a workpiece, or clean solar panels requires the cognition and manipulation capabilities to facilitate such compliant interaction. Evolution equipped humans with advanced mental abilities to envision physical contact situations and their resulting outcome, dexterous motor skills to perform the actions accordingly, as well as a sense of quality to rate the outcome of the task. In order to achieve human-like performance, a robot must provide the necessary methods to represent, plan, execute, and interpret compliant manipulation tasks. This dissertation covers those four steps of reasoning in the concept of intelligent physical compliance. The contributions advance the capabilities of service robots by combining artificial intelligence reasoning methods and control strategies for compliant manipulation. A classification of manipulation tasks is conducted to identify the central research questions of the addressed topic. Novel representations are derived to describe the properties of physical interaction. Special attention is given to wiping tasks which are predominant in everyday environments. It is investigated how symbolic task descriptions can be translated into meaningful robot commands. A particle distribution model is used to plan goal-oriented wiping actions and predict the quality according to the anticipated result. The planned tool motions are converted into the joint space of the humanoid robot Rollin' Justin to perform the tasks in the real world. In order to execute the motions in a physically compliant fashion, a hierarchical whole-body impedance controller is integrated into the framework. The controller is automatically parameterized with respect to the requirements of the particular task. Haptic feedback is utilized to infer contact and interpret the performance semantically. Finally, the robot is able to compensate for possible disturbances as it plans additional recovery motions while effectively closing the cognitive control loop. Among others, the developed concept is applied in an actual space robotics mission, in which an astronaut aboard the International Space Station (ISS) commands Rollin' Justin to maintain a Martian solar panel farm in a mock-up environment. This application demonstrates the far-reaching impact of the proposed approach and the associated opportunities that emerge with the availability of cognition-enabled service robots

    Constructing 3D faces from natural language interface

    Get PDF
    This thesis presents a system by which 3D images of human faces can be constructed using a natural language interface. The driving force behind the project was the need to create a system whereby a machine could produce artistic images from verbal or composed descriptions. This research is the first to look at constructing and modifying facial image artwork using a natural language interface. Specialised modules have been developed to control geometry of 3D polygonal head models in a commercial modeller from natural language descriptions. These modules were produced from research on human physiognomy, 3D modelling techniques and tools, facial modelling and natural language processing. [Continues.

    Petri net modelling of a communications protocol

    Get PDF
    The Petri net is a formal modelling tool applicable to distributed systems and communication protocols. Two methods of analysis are applied to formal models of the "Alternating Bit Protocol". (i) A timed Petri net model is simulated to measure protocol performance. (ii) A modular numeric Petri net model is validated by reachability analysis. The simulation and validation tools are programmed in (i) "C" language and (ii) Prolog. A specification language "Needle" is developed. It describes the model system as a hierarchy of modular state transition networks. The model is searched for all possible event sequences, and the result displayed as a reachability tree. The specification language is capable of describing models which execute backwards in simulation time. The modular numeric Petri net is the basis of a powerful computer architecture, capable of parsing its own specification language to build complex models. Attention is drawn to the similarities between Petri net theory and quantum mechanics
    • 

    corecore