176 research outputs found

    Projective synchronization analysis for BAM neural networks with time-varying delay via novel control

    Get PDF
    In this paper, the projective synchronization of BAM neural networks with time-varying delays is studied. Firstly, a type of novel adaptive controller is introduced for the considered neural networks, which can achieve projective synchronization. Then, based on the adaptive controller, some novel and useful conditions are obtained to ensure the projective synchronization of considered neural networks. To our knowledge, different from other forms of synchronization, projective synchronization is more suitable to clearly represent the nonlinear systems’ fragile nature. Besides, we solve the projective synchronization problem between two different chaotic BAM neural networks, while most of the existing works only concerned with the projective synchronization chaotic systems with the same topologies. Compared with the controllers in previous papers, the designed controllers in this paper do not require any activation functions during the application process. Finally, an example is provided to show the effectiveness of the theoretical results

    Generalized projective series synchronization between chaotic systems and its application

    Get PDF
    No Abstract

    Fuzzy synchronization of chaotic systems with hidden attractors

    Get PDF
    Chaotic systems are hard to synchronize, and no general solution exists. The presence of hidden attractors makes finding a solution particularly elusive. Successful synchronization critically depends on the control strategy, which must be carefully chosen considering system features such as the presence of hidden attractors. We studied the feasibility of fuzzy control for synchronizing chaotic systems with hidden attractors and employed a special numerical integration method that takes advantage of the oscillatory characteristic of chaotic systems. We hypothesized that fuzzy synchronization and the chosen numerical integration method can successfully deal with this case of synchronization. We tested two synchronization schemes: complete synchronization, which leverages linearization, and projective synchronization, capitalizing on parallel distributed compensation (PDC). We applied the proposal to a set of known chaotic systems of integer order with hidden attractors. Our results indicated that fuzzy control strategies combined with the special numerical integration method are effective tools to synchronize chaotic systems with hidden attractors. In addition, for projective synchronization, we propose a new strategy to optimize error convergence. Furthermore, we tested and compared different Takagi-Sugeno (T-S) fuzzy models obtained by tensor product (TP) model transformation. We found an effect of the fuzzy model of the chaotic system on the synchronization performance

    On the impulsive synchronization control for a class of chaotic systems

    Get PDF
    The problem on chaos synchronization for a class of chaotic system is addressed. Based on impulsive control theory and by constructing a novel Lyapunov functional, new impulsive synchronization strategies are presented and possess more practical application value. Finally some typical numerical simulation examples are included to demonstrate the effectiveness of the theoretical results

    On the validity of memristor modeling in the neural network literature

    Full text link
    An analysis of the literature shows that there are two types of non-memristive models that have been widely used in the modeling of so-called "memristive" neural networks. Here, we demonstrate that such models have nothing in common with the concept of memristive elements: they describe either non-linear resistors or certain bi-state systems, which all are devices without memory. Therefore, the results presented in a significant number of publications are at least questionable, if not completely irrelevant to the actual field of memristive neural networks

    Generalized Synchronization of Stochastic Discrete Chaotic System with Poisson Distribution Coefficient

    Get PDF
    This paper addresses the generalized synchronization of stochastic discrete chaotic systems with Poisson distribution coefficient. Firstly, based on the orthogonal polynomial approximation theory of discrete random function in Hilbert spaces, the discrete chaotic system with random parameter is transformed into its equivalent deterministic system. Secondly, a general method for the generalized synchronization of discrete chaotic system with random parameter is presented by Lyapunov stability theory and contraction theorem. Finally, two synchronization examples numerically illustrated that the proposed control scheme is effective for any stochastic discrete system

    Finite-time adaptive synchronization of fractional-order delayed quaternion-valued fuzzy neural networks

    Get PDF
    Based on direct quaternion method, this paper explores the finite-time adaptive synchronization (FAS) of fractional-order delayed quaternion-valued fuzzy neural networks (FODQVFNNs). Firstly, a useful fractional differential inequality is created, which offers an effective way to investigate FAS. Then two novel quaternion-valued adaptive control strategies are designed. By means of our newly proposed inequality, the basic knowledge about fractional calculus, reduction to absurdity as well as several inequality techniques of quaternion and fuzzy logic, several sufficient FAS criteria are derived for FODQVFNNs. Moreover, the settling time of FAS is estimated, which is in connection with the order and initial values of considered systems as well as the controller parameters. Ultimately, the validity of obtained FAS criteria is corroborated by numerical simulations

    Synchronization of N-Non-Linear Slave Systems with Master System Using Non-Adaptive and Adaptive Coupled Observers

    Get PDF
    Synchronization of N-slave chaotic systems with a master system is a challenging task, particularly in recent times. In this paper, a novel methodology is proposed for synchronizing the N number of slave systems with a master system. The proposed methodology is based on coupled adaptive synchronous observers. The difference between the corresponding states of master and slave systems is converged to the origin by means of a novel feedback control scheme to achieve synchronization between the master and slave systems. The efficacy of the proposed methodology is verified through a simulation of FitzHugh–Nagumo non-linear systems in MATLAB. The simulation results validate and prove claims, and these systems are successfully synchronized by CCS and CCAS observer-based control

    Modified projective synchronization of fractional-order hyperchaotic memristor-based Chua’s circuit

    Get PDF
    This paper investigates the modified projective synchronization (MPS) between two hyperchaotic memristor-based Chua circuits modeled by two nonlinear integer-order and fractional-order systems. First, a hyperchaotic memristor-based Chua circuit is suggested, and its dynamics are explored using different tools, including stability theory, phase portraits, Lyapunov exponents, and bifurcation diagrams. Another interesting property of this circuit was the coexistence of attractors and the appearance of mixed-mode oscillations. It has been shown that one can achieve MPS with integer-order and incommensurate fractional-order memristor-based Chua circuits. Finally, examples of numerical simulation are presented, showing that the theoretical results are in good agreement with the numerical ones

    Robust Multimode Function Synchronization of Memristive Neural Networks with Parameter Perturbations and Time-Varying Delays

    Get PDF
    Publisher Copyright: IEEE Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Currently, some works on studying complete synchronization of dynamical systems are usually restricted to its two special cases: 1) power-rate synchronization and 2) exponential synchronization. Therefore, how to give a generalization of these types of complete synchronization by the mathematical expression is an open question that needs to be urgently solved. To begin with, this article proposes multimode function synchronization by the mathematical expression for the first time, which is a generalization of exponential synchronization, power-rate synchronization, logarithmical synchronization, and so on. Moreover, two adaptive controllers are designed to achieve robust multimode function synchronization of memristive neural networks (MNNs) with mismatched parameters and uncertain parameters. Each adaptive controller includes function r(t) and update gain σ. By choosing different types of r(t), multiple types of complete synchronization, including power-rate synchronization and exponential synchronization can be obtained. And update gain σ can be used to adjust the speed of synchronization. Therefore, our results enlarge and strengthen the existing results. Two examples are put forward to verify the validity of our results.Peer reviewedFinal Accepted Versio
    • …
    corecore