7,325 research outputs found

    Projective simulation with generalization

    Full text link
    The ability to generalize is an important feature of any intelligent agent. Not only because it may allow the agent to cope with large amounts of data, but also because in some environments, an agent with no generalization capabilities cannot learn. In this work we outline several criteria for generalization, and present a dynamic and autonomous machinery that enables projective simulation agents to meaningfully generalize. Projective simulation, a novel, physical approach to artificial intelligence, was recently shown to perform well in standard reinforcement learning problems, with applications in advanced robotics as well as quantum experiments. Both the basic projective simulation model and the presented generalization machinery are based on very simple principles. This allows us to provide a full analytical analysis of the agent's performance and to illustrate the benefit the agent gains by generalizing. Specifically, we show that already in basic (but extreme) environments, learning without generalization may be impossible, and demonstrate how the presented generalization machinery enables the projective simulation agent to learn.Comment: 14 pages, 9 figure

    Benchmarking projective simulation in navigation problems

    Full text link
    Projective simulation (PS) is a model for intelligent agents with a deliberation capacity that is based on episodic memory. The model has been shown to provide a flexible framework for constructing reinforcement-learning agents, and it allows for quantum mechanical generalization, which leads to a speed-up in deliberation time. PS agents have been applied successfully in the context of complex skill learning in robotics, and in the design of state-of-the-art quantum experiments. In this paper, we study the performance of projective simulation in two benchmarking problems in navigation, namely the grid world and the mountain car problem. The performance of PS is compared to standard tabular reinforcement learning approaches, Q-learning and SARSA. Our comparison demonstrates that the performance of PS and standard learning approaches are qualitatively and quantitatively similar, while it is much easier to choose optimal model parameters in case of projective simulation, with a reduced computational effort of one to two orders of magnitude. Our results show that the projective simulation model stands out for its simplicity in terms of the number of model parameters, which makes it simple to set up the learning agent in unknown task environments.Comment: 8 pages, 10 figure

    Projective simulation for artificial intelligence

    Get PDF
    We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation.Comment: 22 pages, 18 figures. Close to published version, with footnotes retaine

    A Projective Simulation Scheme for Partially-Observable Multi-Agent Systems

    Full text link
    We introduce a kind of partial observability to the projective simulation (PS) learning method. It is done by adding a belief projection operator and an observability parameter to the original framework of the efficiency of the PS model. I provide theoretical formulations, network representations, and situated scenarios derived from the invasion toy problem as a starting point for some multi-agent PS models.Comment: 28 pages, 21 figure

    Slow Forcing in the Projective Dynamics Method

    Full text link
    We provide a proof that when there is no forcing the recently introduced projective dynamics Monte Carlo algorithm gives the exact lifetime of the metastable state, within statistical uncertainties. We also show numerical evidence illustrating that for slow forcing the approach to the zero-forcing limit is rather rapid. The model studied numerically is the 3-dimensional 3-state Potts ferromagnet.Comment: 1 figure, invited submission to CCP'98 conference, submitted to Computer Physics Communication

    Generating sequential space-filling designs using genetic algorithms and Monte Carlo methods

    Get PDF
    In this paper, the authors compare a Monte Carlo method and an optimization-based approach using genetic algorithms for sequentially generating space-filling experimental designs. It is shown that Monte Carlo methods perform better than genetic algorithms for this specific problem

    Classification of Matrix Product States with a Local (Gauge) Symmetry

    Full text link
    Matrix Product States (MPS) are a particular type of one dimensional tensor network states, that have been applied to the study of numerous quantum many body problems. One of their key features is the possibility to describe and encode symmetries on the level of a single building block (tensor), and hence they provide a natural playground for the study of symmetric systems. In particular, recent works have proposed to use MPS (and higher dimensional tensor networks) for the study of systems with local symmetry that appear in the context of gauge theories. In this work we classify MPS which exhibit local invariance under arbitrary gauge groups. We study the respective tensors and their structure, revealing known constructions that follow known gauging procedures, as well as different, other types of possible gauge invariant states
    • …
    corecore