238 research outputs found

    Convexity preserving interpolatory subdivision with conic precision

    Full text link
    The paper is concerned with the problem of shape preserving interpolatory subdivision. For arbitrarily spaced, planar input data an efficient non-linear subdivision algorithm is presented that results in G1G^1 limit curves, reproduces conic sections and respects the convexity properties of the initial data. Significant numerical examples illustrate the effectiveness of the proposed method

    Geometric and photometric affine invariant image registration

    Get PDF
    This thesis aims to present a solution to the correspondence problem for the registration of wide-baseline images taken from uncalibrated cameras. We propose an affine invariant descriptor that combines the geometry and photometry of the scene to find correspondences between both views. The geometric affine invariant component of the descriptor is based on the affine arc-length metric, whereas the photometry is analysed by invariant colour moments. A graph structure represents the spatial distribution of the primitive features; i.e. nodes correspond to detected high-curvature points, whereas arcs represent connectivities by extracted contours. After matching, we refine the search for correspondences by using a maximum likelihood robust algorithm. We have evaluated the system over synthetic and real data. The method is endemic to propagation of errors introduced by approximations in the system.BAE SystemsSelex Sensors and Airborne System

    Regression models on Riemannian symmetric spaces

    Get PDF
    The aim of this paper is to develop a general regression framework for the analysis of manifold-valued response in a Riemannian symmetric space (RSS) and its association with multiple covariates of interest, such as age or gender, in Euclidean space. Such RSS-valued data arises frequently in medical imaging, surface modeling, and computer vision, among many others. We develop an intrinsic regression model solely based on an intrinsic conditional moment assumption, avoiding specifying any parametric distribution in RSS. We propose various link functions to map from the Euclidean space of multiple covariates to the RSS of responses. We develop a two-stage procedure to calculate the parameter estimates and determine their asymptotic distributions. We construct the Wald and geodesic test statistics to test hypotheses of unknown parameters. We systematically investigate the geometric invariant property of these estimates and test statistics. Simulation studies and a real data analysis are used to evaluate the finite sample properties of our methods

    Intrinsic Inference on the Mean Geodesic of Planar Shapes and Tree Discrimination by Leaf Growth

    Full text link
    For planar landmark based shapes, taking into account the non-Euclidean geometry of the shape space, a statistical test for a common mean first geodesic principal component (GPC) is devised. It rests on one of two asymptotic scenarios, both of which are identical in a Euclidean geometry. For both scenarios, strong consistency and central limit theorems are established, along with an algorithm for the computation of a Ziezold mean geodesic. In application, this allows to verify the geodesic hypothesis for leaf growth of Canadian black poplars and to discriminate genetically different trees by observations of leaf shape growth over brief time intervals. With a test based on Procrustes tangent space coordinates, not involving the shape space's curvature, neither can be achieved.Comment: 28 pages, 4 figure

    A Minimalist Approach to Type-Agnostic Detection of Quadrics in Point Clouds

    Get PDF
    This paper proposes a segmentation-free, automatic and efficient procedure to detect general geometric quadric forms in point clouds, where clutter and occlusions are inevitable. Our everyday world is dominated by man-made objects which are designed using 3D primitives (such as planes, cones, spheres, cylinders, etc.). These objects are also omnipresent in industrial environments. This gives rise to the possibility of abstracting 3D scenes through primitives, thereby positions these geometric forms as an integral part of perception and high level 3D scene understanding. As opposed to state-of-the-art, where a tailored algorithm treats each primitive type separately, we propose to encapsulate all types in a single robust detection procedure. At the center of our approach lies a closed form 3D quadric fit, operating in both primal & dual spaces and requiring as low as 4 oriented-points. Around this fit, we design a novel, local null-space voting strategy to reduce the 4-point case to 3. Voting is coupled with the famous RANSAC and makes our algorithm orders of magnitude faster than its conventional counterparts. This is the first method capable of performing a generic cross-type multi-object primitive detection in difficult scenes. Results on synthetic and real datasets support the validity of our method.Comment: Accepted for publication at CVPR 201

    Generic Primitive Detection in Point Clouds Using Novel Minimal Quadric Fits

    Full text link
    We present a novel and effective method for detecting 3D primitives in cluttered, unorganized point clouds, without axillary segmentation or type specification. We consider the quadric surfaces for encapsulating the basic building blocks of our environments - planes, spheres, ellipsoids, cones or cylinders, in a unified fashion. Moreover, quadrics allow us to model higher degree of freedom shapes, such as hyperboloids or paraboloids that could be used in non-rigid settings. We begin by contributing two novel quadric fits targeting 3D point sets that are endowed with tangent space information. Based upon the idea of aligning the quadric gradients with the surface normals, our first formulation is exact and requires as low as four oriented points. The second fit approximates the first, and reduces the computational effort. We theoretically analyze these fits with rigor, and give algebraic and geometric arguments. Next, by re-parameterizing the solution, we devise a new local Hough voting scheme on the null-space coefficients that is combined with RANSAC, reducing the complexity from O(N4)O(N^4) to O(N3)O(N^3) (three points). To the best of our knowledge, this is the first method capable of performing a generic cross-type multi-object primitive detection in difficult scenes without segmentation. Our extensive qualitative and quantitative results show that our method is efficient and flexible, as well as being accurate.Comment: Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI). arXiv admin note: substantial text overlap with arXiv:1803.0719

    NCUWM Talk Abstracts 2010

    Get PDF
    Dr. Bryna Kra, Northwestern University “From Ramsey Theory to Dynamical Systems and Back” Dr. Karen Vogtmann, Cornell University “Ping-Pong in Outer Space” Lindsay Baun, College of St. Benedict Danica Belanus, University of North Dakota Hayley Belli, University of Oregon Tiffany Bradford, Saint Francis University Kathryn Bryant, Northern Arizona University Laura Buggy, College of St. Benedict Katharina Carella, Ithaca College Kathleen Carroll, Wheaton College Elizabeth Collins-Wildman, Carleton College Rebecca Dorff, Brigham Young University Melisa Emory, University of Nebraska at Omaha Avis Foster, George Mason University Xiaojing Fu, Clarkson University Jennifer Garbett, Kenyon College Nicki Gaswick, University of Nebraska-Lincoln Rita Gnizak, Fort Hays State University Kailee Gray, University of South Dakota Samantha Hilker, Sam Houston State University Ruthi Hortsch, University of Michigan Jennifer Iglesias, Harvey Mudd College Laura Janssen, University of Nebraska-Lincoln Laney Kuenzel, Stanford University Ellen Le, Pomona College Thu Le, University of the South Shauna Leonard, Arkansas State University Tova Lindberg, Bethany Lutheran College Lisa Moats, Concordia College Kaitlyn McConville, Westminster College Jillian Neeley, Ithaca College Marlene Ouayoro, George Mason University Kelsey Quarton, Bradley University Brooke Quisenberry, Hope College Hannah Ross, Kenyon College Karla Schommer, College of St. Benedict Rebecca Scofield, University of Iowa April Scudere, Westminster College Natalie Sheils, Seattle University Kaitlin Speer, Baylor University Meredith Stevenson, Murray State University Kiri Sunde, University of North Carolina Kaylee Sutton, John Carroll University Frances Tirado, University of Florida Anna Tracy, University of the South Kelsey Uherka, Morningside College Danielle Wheeler, Coe College Lindsay Willett, Grove City College Heather Williamson, Rice University Chengcheng Yang, Rice University Jie Zeng, Michigan Technological Universit
    • 

    corecore