1,645 research outputs found

    Constructions and Noise Threshold of Hyperbolic Surface Codes

    Full text link
    We show how to obtain concrete constructions of homological quantum codes based on tilings of 2D surfaces with constant negative curvature (hyperbolic surfaces). This construction results in two-dimensional quantum codes whose tradeoff of encoding rate versus protection is more favorable than for the surface code. These surface codes would require variable length connections between qubits, as determined by the hyperbolic geometry. We provide numerical estimates of the value of the noise threshold and logical error probability of these codes against independent X or Z noise, assuming noise-free error correction

    Homological Error Correction: Classical and Quantum Codes

    Get PDF
    We prove several theorems characterizing the existence of homological error correction codes both classically and quantumly. Not every classical code is homological, but we find a family of classical homological codes saturating the Hamming bound. In the quantum case, we show that for non-orientable surfaces it is impossible to construct homological codes based on qudits of dimension D>2D>2, while for orientable surfaces with boundaries it is possible to construct them for arbitrary dimension DD. We give a method to obtain planar homological codes based on the construction of quantum codes on compact surfaces without boundaries. We show how the original Shor's 9-qubit code can be visualized as a homological quantum code. We study the problem of constructing quantum codes with optimal encoding rate. In the particular case of toric codes we construct an optimal family and give an explicit proof of its optimality. For homological quantum codes on surfaces of arbitrary genus we also construct a family of codes asymptotically attaining the maximum possible encoding rate. We provide the tools of homology group theory for graphs embedded on surfaces in a self-contained manner.Comment: Revtex4 fil

    Symplectic spreads, planar functions and mutually unbiased bases

    Full text link
    In this paper we give explicit descriptions of complete sets of mutually unbiased bases (MUBs) and orthogonal decompositions of special Lie algebras sln(C)sl_n(\mathbb{C}) obtained from commutative and symplectic semifields, and from some other non-semifield symplectic spreads. Relations between various constructions are also studied. We show that the automorphism group of a complete set of MUBs is isomorphic to the automorphism group of the corresponding orthogonal decomposition of the Lie algebra sln(C)sl_n(\mathbb{C}). In the case of symplectic spreads this automorphism group is determined by the automorphism group of the spread. By using the new notion of pseudo-planar functions over fields of characteristic two we give new explicit constructions of complete sets of MUBs.Comment: 20 page

    Topological Quantum Error Correction with Optimal Encoding Rate

    Full text link
    We prove the existence of topological quantum error correcting codes with encoding rates k/nk/n asymptotically approaching the maximum possible value. Explicit constructions of these topological codes are presented using surfaces of arbitrary genus. We find a class of regular toric codes that are optimal. For physical implementations, we present planar topological codes.Comment: REVTEX4 file, 5 figure

    Dynamics for holographic codes

    Full text link
    We describe how to introduce dynamics for the holographic states and codes introduced by Pastawski, Yoshida, Harlow and Preskill. This task requires the definition of a continuous limit of the kinematical Hilbert space which we argue may be achieved via the semicontinuous limit of Jones. Dynamics is then introduced by building a unitary representation of a group known as Thompson's group T, which is closely related to the conformal group in 1+1 dimensions. The bulk Hilbert space is realised as a special subspace of the semicontinuous limit Hilbert space spanned by a class of distinguished states which can be assigned a discrete bulk geometry. The analogue of the group of large bulk diffeomorphisms is given by a unitary representation of the Ptolemy group Pt, on the bulk Hilbert space thus realising a toy model of the AdS/CFT correspondence which we call the Pt/T correspondence.Comment: 40 pages (revised version submitted to journal). See video of related talk: https://www.youtube.com/watch?v=xc2KIa2LDF
    • …
    corecore