18,732 research outputs found

    Hardware Based Projection onto The Parity Polytope and Probability Simplex

    Full text link
    This paper is concerned with the adaptation to hardware of methods for Euclidean norm projections onto the parity polytope and probability simplex. We first refine recent efforts to develop efficient methods of projection onto the parity polytope. Our resulting algorithm can be configured to have either average computational complexity O(d)\mathcal{O}\left(d\right) or worst case complexity O(dlogd)\mathcal{O}\left(d\log{d}\right) on a serial processor where dd is the dimension of projection space. We show how to adapt our projection routine to hardware. Our projection method uses a sub-routine that involves another Euclidean projection; onto the probability simplex. We therefore explain how to adapt to hardware a well know simplex projection algorithm. The hardware implementations of both projection algorithms achieve area scalings of O(d(logd)2)\mathcal{O}(d\left(\log{d}\right)^2) at a delay of O((logd)2)\mathcal{O}(\left(\log{d}\right)^2). Finally, we present numerical results in which we evaluate the fixed-point accuracy and resource scaling of these algorithms when targeting a modern FPGA

    Optimal Linear and Cyclic Locally Repairable Codes over Small Fields

    Full text link
    We consider locally repairable codes over small fields and propose constructions of optimal cyclic and linear codes in terms of the dimension for a given distance and length. Four new constructions of optimal linear codes over small fields with locality properties are developed. The first two approaches give binary cyclic codes with locality two. While the first construction has availability one, the second binary code is characterized by multiple available repair sets based on a binary Simplex code. The third approach extends the first one to q-ary cyclic codes including (binary) extension fields, where the locality property is determined by the properties of a shortened first-order Reed-Muller code. Non-cyclic optimal binary linear codes with locality greater than two are obtained by the fourth construction.Comment: IEEE Information Theory Workshop (ITW) 2015, Apr 2015, Jerusalem, Israe

    Turning Optical Complex Media into Universal Reconfigurable Linear Operators by Wavefront Shaping

    Full text link
    Performing linear operations using optical devices is a crucial building block in many fields ranging from telecommunication to optical analogue computation and machine learning. For many of these applications, key requirements are robustness to fabrication inaccuracies and reconfigurability. Current designs of custom-tailored photonic devices or coherent photonic circuits only partially satisfy these needs. Here, we propose a way to perform linear operations by using complex optical media such as multimode fibers or thin scattering layers as a computational platform driven by wavefront shaping. Given a large random transmission matrix (TM) representing light propagation in such a medium, we can extract a desired smaller linear operator by finding suitable input and output projectors. We discuss fundamental upper bounds on the size of the linear transformations our approach can achieve and provide an experimental demonstration. For the latter, first we retrieve the complex medium's TM with a non-interferometric phase retrieval method. Then, we take advantage of the large number of degrees of freedom to find input wavefronts using a Spatial Light Modulator (SLM) that cause the system, composed of the SLM and the complex medium, to act as a desired complex-valued linear operator on the optical field. We experimentally build several 16×1616\times16 complex-valued operators, and are able to switch from one to another at will. Our technique offers the prospect of reconfigurable, robust and easy-to-fabricate linear optical analogue computation units

    On the existence of asymptotically good linear codes in minor-closed classes

    Full text link
    Let C=(C1,C2,)\mathcal{C} = (C_1, C_2, \ldots) be a sequence of codes such that each CiC_i is a linear [ni,ki,di][n_i,k_i,d_i]-code over some fixed finite field F\mathbb{F}, where nin_i is the length of the codewords, kik_i is the dimension, and did_i is the minimum distance. We say that C\mathcal{C} is asymptotically good if, for some ε>0\varepsilon > 0 and for all ii, niin_i \geq i, ki/niεk_i/n_i \geq \varepsilon, and di/niεd_i/n_i \geq \varepsilon. Sequences of asymptotically good codes exist. We prove that if C\mathcal{C} is a class of GF(pn)(p^n)-linear codes (where pp is prime and n1n \geq 1), closed under puncturing and shortening, and if C\mathcal{C} contains an asymptotically good sequence, then C\mathcal{C} must contain all GF(p)(p)-linear codes. Our proof relies on a powerful new result from matroid structure theory
    corecore