15,143 research outputs found

    Newton based Stochastic Optimization using q-Gaussian Smoothed Functional Algorithms

    Full text link
    We present the first q-Gaussian smoothed functional (SF) estimator of the Hessian and the first Newton-based stochastic optimization algorithm that estimates both the Hessian and the gradient of the objective function using q-Gaussian perturbations. Our algorithm requires only two system simulations (regardless of the parameter dimension) and estimates both the gradient and the Hessian at each update epoch using these. We also present a proof of convergence of the proposed algorithm. In a related recent work (Ghoshdastidar et al., 2013), we presented gradient SF algorithms based on the q-Gaussian perturbations. Our work extends prior work on smoothed functional algorithms by generalizing the class of perturbation distributions as most distributions reported in the literature for which SF algorithms are known to work and turn out to be special cases of the q-Gaussian distribution. Besides studying the convergence properties of our algorithm analytically, we also show the results of several numerical simulations on a model of a queuing network, that illustrate the significance of the proposed method. In particular, we observe that our algorithm performs better in most cases, over a wide range of q-values, in comparison to Newton SF algorithms with the Gaussian (Bhatnagar, 2007) and Cauchy perturbations, as well as the gradient q-Gaussian SF algorithms (Ghoshdastidar et al., 2013).Comment: This is a longer of version of the paper with the same title accepted in Automatic

    From Infinite to Finite Programs: Explicit Error Bounds with Applications to Approximate Dynamic Programming

    Full text link
    We consider linear programming (LP) problems in infinite dimensional spaces that are in general computationally intractable. Under suitable assumptions, we develop an approximation bridge from the infinite-dimensional LP to tractable finite convex programs in which the performance of the approximation is quantified explicitly. To this end, we adopt the recent developments in two areas of randomized optimization and first order methods, leading to a priori as well as a posterior performance guarantees. We illustrate the generality and implications of our theoretical results in the special case of the long-run average cost and discounted cost optimal control problems for Markov decision processes on Borel spaces. The applicability of the theoretical results is demonstrated through a constrained linear quadratic optimal control problem and a fisheries management problem.Comment: 30 pages, 5 figure

    Testing quantum mechanics: a statistical approach

    Full text link
    As experiments continue to push the quantum-classical boundary using increasingly complex dynamical systems, the interpretation of experimental data becomes more and more challenging: when the observations are noisy, indirect, and limited, how can we be sure that we are observing quantum behavior? This tutorial highlights some of the difficulties in such experimental tests of quantum mechanics, using optomechanics as the central example, and discusses how the issues can be resolved using techniques from statistics and insights from quantum information theory.Comment: v1: 2 pages; v2: invited tutorial for Quantum Measurements and Quantum Metrology, substantial expansion of v1, 19 pages; v3: accepted; v4: corrected some errors, publishe

    Evaluating Structural Models for the U.S. Short Rate Using EMM and Particle Filters

    Get PDF
    We combine the efficient method of moments with appropriate algorithms from the optimal filtering literature to study a collection of models for the U.S. short rate. Our models include two continuous-time stochastic volatility models and two regime switching models, which provided the best fit in previous work that examined a large collection of models. The continuous-time stochastic volatility models fall into the class of nonlinear, non-Gaussian state space models for which we apply particle filtering and smoothing algorithms. Our results demonstrate the effectiveness of the particle filter for continuous-time processes. Our analysis also provides an alternative and complementary approach to the reprojection technique of Gallant and Tauchen (1998) for studying the dynamics of volatility.

    Batch Nonlinear Continuous-Time Trajectory Estimation as Exactly Sparse Gaussian Process Regression

    Full text link
    In this paper, we revisit batch state estimation through the lens of Gaussian process (GP) regression. We consider continuous-discrete estimation problems wherein a trajectory is viewed as a one-dimensional GP, with time as the independent variable. Our continuous-time prior can be defined by any nonlinear, time-varying stochastic differential equation driven by white noise; this allows the possibility of smoothing our trajectory estimates using a variety of vehicle dynamics models (e.g., `constant-velocity'). We show that this class of prior results in an inverse kernel matrix (i.e., covariance matrix between all pairs of measurement times) that is exactly sparse (block-tridiagonal) and that this can be exploited to carry out GP regression (and interpolation) very efficiently. When the prior is based on a linear, time-varying stochastic differential equation and the measurement model is also linear, this GP approach is equivalent to classical, discrete-time smoothing (at the measurement times); when a nonlinearity is present, we iterate over the whole trajectory to maximize accuracy. We test the approach experimentally on a simultaneous trajectory estimation and mapping problem using a mobile robot dataset.Comment: Submitted to Autonomous Robots on 20 November 2014, manuscript # AURO-D-14-00185, 16 pages, 7 figure
    • ā€¦
    corecore