26,021 research outputs found

    Projection predictive model selection for Gaussian processes

    Full text link
    We propose a new method for simplification of Gaussian process (GP) models by projecting the information contained in the full encompassing model and selecting a reduced number of variables based on their predictive relevance. Our results on synthetic and real world datasets show that the proposed method improves the assessment of variable relevance compared to the automatic relevance determination (ARD) via the length-scale parameters. We expect the method to be useful for improving explainability of the models, reducing the future measurement costs and reducing the computation time for making new predictions.Comment: A few minor changes in tex

    Modified Linear Projection for Large Spatial Data Sets

    Full text link
    Recent developments in engineering techniques for spatial data collection such as geographic information systems have resulted in an increasing need for methods to analyze large spatial data sets. These sorts of data sets can be found in various fields of the natural and social sciences. However, model fitting and spatial prediction using these large spatial data sets are impractically time-consuming, because of the necessary matrix inversions. Various methods have been developed to deal with this problem, including a reduced rank approach and a sparse matrix approximation. In this paper, we propose a modification to an existing reduced rank approach to capture both the large- and small-scale spatial variations effectively. We have used simulated examples and an empirical data analysis to demonstrate that our proposed approach consistently performs well when compared with other methods. In particular, the performance of our new method does not depend on the dependence properties of the spatial covariance functions.Comment: 29 pages, 5 figures, 4 table

    A Computationally Efficient Projection-Based Approach for Spatial Generalized Linear Mixed Models

    Full text link
    Inference for spatial generalized linear mixed models (SGLMMs) for high-dimensional non-Gaussian spatial data is computationally intensive. The computational challenge is due to the high-dimensional random effects and because Markov chain Monte Carlo (MCMC) algorithms for these models tend to be slow mixing. Moreover, spatial confounding inflates the variance of fixed effect (regression coefficient) estimates. Our approach addresses both the computational and confounding issues by replacing the high-dimensional spatial random effects with a reduced-dimensional representation based on random projections. Standard MCMC algorithms mix well and the reduced-dimensional setting speeds up computations per iteration. We show, via simulated examples, that Bayesian inference for this reduced-dimensional approach works well both in terms of inference as well as prediction, our methods also compare favorably to existing "reduced-rank" approaches. We also apply our methods to two real world data examples, one on bird count data and the other classifying rock types
    • …
    corecore