100 research outputs found

    Determinantal sets, singularities and application to optimal control in medical imagery

    Get PDF
    Control theory has recently been involved in the field of nuclear magnetic resonance imagery. The goal is to control the magnetic field optimally in order to improve the contrast between two biological matters on the pictures. Geometric optimal control leads us here to analyze mero-morphic vector fields depending upon physical parameters , and having their singularities defined by a deter-minantal variety. The involved matrix has polynomial entries with respect to both the state variables and the parameters. Taking into account the physical constraints of the problem, one needs to classify, with respect to the parameters, the number of real singularities lying in some prescribed semi-algebraic set. We develop a dedicated algorithm for real root classification of the singularities of the rank defects of a polynomial matrix, cut with a given semi-algebraic set. The algorithm works under some genericity assumptions which are easy to check. These assumptions are not so restrictive and are satisfied in the aforementioned application. As more general strategies for real root classification do, our algorithm needs to compute the critical loci of some maps, intersections with the boundary of the semi-algebraic domain, etc. In order to compute these objects, the determinantal structure is exploited through a stratifi-cation by the rank of the polynomial matrix. This speeds up the computations by a factor 100. Furthermore, our implementation is able to solve the application in medical imagery, which was out of reach of more general algorithms for real root classification. For instance, computational results show that the contrast problem where one of the matters is water is partitioned into three distinct classes

    Deciding the consistency of non-linear real arithmetic constraints with a conflict driven search using cylindrical algebraic coverings

    Get PDF
    We present a new algorithm for determining the satisfiability of conjunctions of non-linear polynomial constraints over the reals, which can be used as a theory solver for satisfiability modulo theory (SMT) solving for non-linear real arithmetic. The algorithm is a variant of Cylindrical Algebraic Decomposition (CAD) adapted for satisfiability, where solution candidates (sample points) are constructed incrementally, either until a satisfying sample is found or sufficient samples have been sampled to conclude unsatisfiability. The choice of samples is guided by the input constraints and previous conflicts. The key idea behind our new approach is to start with a partial sample; demonstrate that it cannot be extended to a full sample; and from the reasons for that rule out a larger space around the partial sample, which build up incrementally into a cylindrical algebraic covering of the space. There are similarities with the incremental variant of CAD, the NLSAT method of Jovanovic and de Moura, and the NuCAD algorithm of Brown; but we present worked examples and experimental results on a preliminary implementation to demonstrate the differences to these, and the benefits of the new approach

    Cylindrical algebraic decomposition with equational constraints

    Get PDF
    Cylindrical Algebraic Decomposition (CAD) has long been one of the most important algorithms within Symbolic Computation, as a tool to perform quantifier elimination in first order logic over the reals. More recently it is finding prominence in the Satisfiability Checking community as a tool to identify satisfying solutions of problems in nonlinear real arithmetic. The original algorithm produces decompositions according to the signs of polynomials, when what is usually required is a decomposition according to the truth of a formula containing those polynomials. One approach to achieve that coarser (but hopefully cheaper) decomposition is to reduce the polynomials identified in the CAD to reflect a logical structure which reduces the solution space dimension: the presence of Equational Constraints (ECs). This paper may act as a tutorial for the use of CAD with ECs: we describe all necessary background and the current state of the art. In particular, we present recent work on how McCallum's theory of reduced projection may be leveraged to make further savings in the lifting phase: both to the polynomials we lift with and the cells lifted over. We give a new complexity analysis to demonstrate that the double exponent in the worst case complexity bound for CAD reduces in line with the number of ECs. We show that the reduction can apply to both the number of polynomials produced and their degree.Comment: Accepted into the Journal of Symbolic Computation. arXiv admin note: text overlap with arXiv:1501.0446

    Data-Discriminants of Likelihood Equations

    Full text link
    Maximum likelihood estimation (MLE) is a fundamental computational problem in statistics. The problem is to maximize the likelihood function with respect to given data on a statistical model. An algebraic approach to this problem is to solve a very structured parameterized polynomial system called likelihood equations. For general choices of data, the number of complex solutions to the likelihood equations is finite and called the ML-degree of the model. The only solutions to the likelihood equations that are statistically meaningful are the real/positive solutions. However, the number of real/positive solutions is not characterized by the ML-degree. We use discriminants to classify data according to the number of real/positive solutions of the likelihood equations. We call these discriminants data-discriminants (DD). We develop a probabilistic algorithm for computing DDs. Experimental results show that, for the benchmarks we have tried, the probabilistic algorithm is more efficient than the standard elimination algorithm. Based on the computational results, we discuss the real root classification problem for the 3 by 3 symmetric matrix~model.Comment: 2 table
    corecore