274 research outputs found

    ISAR: Ein Autorensystem fĂŒr Interaktive Tische

    Get PDF
    Developing augmented reality systems involves several challenges, that prevent end users and experts from non-technical domains, such as education, to experiment with this technology. In this research we introduce ISAR, an authoring system for augmented reality tabletops targeting users from non-technical domains. ISAR allows non-technical users to create their own interactive tabletop applications and experiment with the use of this technology in domains such as educations, industrial training, and medical rehabilitation.Die Entwicklung von Augmented-Reality-Systemen ist mit mehreren Herausforderungen verbunden, die Endbenutzer und Experten aus nicht-technischen Bereichen, wie z.B. dem Bildungswesen, daran hindern, mit dieser Technologie zu experimentieren. In dieser Forschung stellen wir ISAR vor, ein Autorensystem fĂŒr Augmented-Reality-Tabletops, das sich an Benutzer aus nicht-technischen Bereichen richtet. ISAR ermöglicht es nicht-technischen Anwendern, ihre eigenen interaktiven Tabletop-Anwendungen zu erstellen und mit dem Einsatz dieser Technologie in Bereichen wie Bildung, industrieller Ausbildung und medizinischer Rehabilitation zu experimentieren

    SPATIO-TEMPORAL REGISTRATION IN AUGMENTED REALITY

    Get PDF
    The overarching goal of Augmented Reality (AR) is to provide users with the illusion that virtual and real objects coexist indistinguishably in the same space. An effective persistent illusion requires accurate registration between the real and the virtual objects, registration that is spatially and temporally coherent. However, visible misregistration can be caused by many inherent error sources, such as errors in calibration, tracking, and modeling, and system delay. This dissertation focuses on new methods that could be considered part of "the last mile" of spatio-temporal registration in AR: closed-loop spatial registration and low-latency temporal registration: 1. For spatial registration, the primary insight is that calibration, tracking and modeling are means to an end---the ultimate goal is registration. In this spirit I present a novel pixel-wise closed-loop registration approach that can automatically minimize registration errors using a reference model comprised of the real scene model and the desired virtual augmentations. Registration errors are minimized in both global world space via camera pose refinement, and local screen space via pixel-wise adjustments. This approach is presented in the context of Video See-Through AR (VST-AR) and projector-based Spatial AR (SAR), where registration results are measurable using a commodity color camera. 2. For temporal registration, the primary insight is that the real-virtual relationships are evolving throughout the tracking, rendering, scanout, and display steps, and registration can be improved by leveraging fine-grained processing and display mechanisms. In this spirit I introduce a general end-to-end system pipeline with low latency, and propose an algorithm for minimizing latency in displays (DLP DMD projectors in particular). This approach is presented in the context of Optical See-Through AR (OST-AR), where system delay is the most detrimental source of error. I also discuss future steps that may further improve spatio-temporal registration. Particularly, I discuss possibilities for using custom virtual or physical-virtual fiducials for closed-loop registration in SAR. The custom fiducials can be designed to elicit desirable optical signals that directly indicate any error in the relative pose between the physical and projected virtual objects.Doctor of Philosoph

    Projected Reality - Enhancing Projected Augmentations by Dynamically Choosing the Best Among Several Projection Systems

    No full text

    Augmented Reality

    Get PDF
    Augmented Reality (AR) is a natural development from virtual reality (VR), which was developed several decades earlier. AR complements VR in many ways. Due to the advantages of the user being able to see both the real and virtual objects simultaneously, AR is far more intuitive, but it's not completely detached from human factors and other restrictions. AR doesn't consume as much time and effort in the applications because it's not required to construct the entire virtual scene and the environment. In this book, several new and emerging application areas of AR are presented and divided into three sections. The first section contains applications in outdoor and mobile AR, such as construction, restoration, security and surveillance. The second section deals with AR in medical, biological, and human bodies. The third and final section contains a number of new and useful applications in daily living and learning

    Synchronized Illumination Modulation for Digital Video Compositing

    Get PDF
    Informationsaustausch ist eines der GrundbedĂŒrfnisse der Menschen. WĂ€hrend frĂŒher dazu Wandmalereien,Handschrift, Buchdruck und Malerei eingesetzt wurden, begann man spĂ€ter, Bildfolgen zu erstellen, die als sogenanntes ”Daumenkino” den Eindruck einer Animation vermitteln. Diese wurden schnell durch den Einsatz rotierender Bildscheiben, auf denen mit Hilfe von Schlitzblenden, Spiegeln oder Optiken eine Animation sichtbar wurde, automatisiert – mit sogenannten Phenakistiskopen,Zoetropen oder Praxinoskopen. Mit der Erfindung der Fotografie begannen in der zweiten HĂ€lfte des 19. Jahrhunderts die ersten Wissenschaftler wie Eadweard Muybridge, Etienne-Jules Marey und Ottomar AnschĂŒtz, Serienbildaufnahmen zu erstellen und diese dann in schneller Abfolge, als Film, abzuspielen. Mit dem Beginn der Filmproduktion wurden auch die ersten Versuche unternommen, mit Hilfe dieser neuen Technik spezielle visuelle Effekte zu generieren, um damit die Immersion der Bewegtbildproduktionen weiter zu erhöhen. WĂ€hrend diese Effekte in der analogen Phase der Filmproduktion bis in die achtziger Jahre des 20.Jahrhunderts recht beschrĂ€nkt und sehr aufwendig mit einem enormen manuellen Arbeitsaufwand erzeugt werden mussten, gewannen sie mit der sich rapide beschleunigenden Entwicklung der Halbleitertechnologie und der daraus resultierenden vereinfachten digitalen Bearbeitung immer mehr an Bedeutung. Die enormen Möglichkeiten, die mit der verlustlosen Nachbearbeitung in Kombination mit fotorealistischen, dreidimensionalen Renderings entstanden, fĂŒhrten dazu, dass nahezu alle heute produzierten Filme eine Vielfalt an digitalen Videokompositionseffekten beinhalten. ...Besides home entertainment and business presentations, video projectors are powerful tools for modulating images spatially as well as temporally. The re-evolving need for stereoscopic displays increases the demand for low-latency projectors and recent advances in LED technology also offer high modulation frequencies. Combining such high-frequency illumination modules with synchronized, fast cameras, makes it possible to develop specialized high-speed illumination systems for visual effects production. In this thesis we present different systems for using spatially as well as temporally modulated illumination in combination with a synchronized camera to simplify the requirements of standard digital video composition techniques for film and television productions and to offer new possibilities for visual effects generation. After an overview of the basic terminology and a summary of related methods, we discuss and give examples of how modulated light can be applied to a scene recording context to enable a variety of effects which cannot be realized using standard methods, such as virtual studio technology or chroma keying. We propose using high-frequency, synchronized illumination which, in addition to providing illumination, is modulated in terms of intensity and wavelength to encode technical information for visual effects generation. This is carried out in such a way that the technical components do not influence the final composite and are also not visible to observers on the film set. Using this approach we present a real-time flash keying system for the generation of perspectively correct augmented composites by projecting imperceptible markers for optical camera tracking. Furthermore, we present a system which enables the generation of various digital video compositing effects outside of completely controlled studio environments, such as virtual studios. A third temporal keying system is presented that aims to overcome the constraints of traditional chroma keying in terms of color spill and color dependency. ..

    VEIV: Celebrating the Engineering Doctorate in Virtual Environments, Imaging & Visualisation at University College London

    Get PDF
    The Engineering Doctorate Centre in Virtual Environments, Imaging and Visualisation is University College London’s leading centre for science and engineering research in body scanning, medical imaging, 3D fabrication, and generative design. A range of other projects have enhanced graphics and interactions in healthcare, urban planning, robotics and communications. Founded in 2001, the EngD Centre in VEIV broke new ground for academic and industrial collaboration in doctoral training. Since then the Centre has achieved novel advances through dynamic and creative collaborations with a range of external partners. Innovation in science and engineering continues to be channeled via world- class training and substantial support for enterprise. This volume celebrates over a decade of outstanding research and academic achievement. The portfolio of current and complete projects is a legacy to VEIV’s position at the forefront of collaborative research in graphics, interactions and complex design. VEIV now looks ahead to furthering the advancement and innovation of visual and interactive technologies

    Multi-touch Detection and Semantic Response on Non-parametric Rear-projection Surfaces

    Get PDF
    The ability of human beings to physically touch our surroundings has had a profound impact on our daily lives. Young children learn to explore their world by touch; likewise, many simulation and training applications benefit from natural touch interactivity. As a result, modern interfaces supporting touch input are ubiquitous. Typically, such interfaces are implemented on integrated touch-display surfaces with simple geometry that can be mathematically parameterized, such as planar surfaces and spheres; for more complicated non-parametric surfaces, such parameterizations are not available. In this dissertation, we introduce a method for generalizable optical multi-touch detection and semantic response on uninstrumented non-parametric rear-projection surfaces using an infrared-light-based multi-camera multi-projector platform. In this paradigm, touch input allows users to manipulate complex virtual 3D content that is registered to and displayed on a physical 3D object. Detected touches trigger responses with specific semantic meaning in the context of the virtual content, such as animations or audio responses. The broad problem of touch detection and response can be decomposed into three major components: determining if a touch has occurred, determining where a detected touch has occurred, and determining how to respond to a detected touch. Our fundamental contribution is the design and implementation of a relational lookup table architecture that addresses these challenges through the encoding of coordinate relationships among the cameras, the projectors, the physical surface, and the virtual content. Detecting the presence of touch input primarily involves distinguishing between touches (actual contact events) and hovers (near-contact proximity events). We present and evaluate two algorithms for touch detection and localization utilizing the lookup table architecture. One of the algorithms, a bounded plane sweep, is additionally able to estimate hover-surface distances, which we explore for interactions above surfaces. The proposed method is designed to operate with low latency and to be generalizable. We demonstrate touch-based interactions on several physical parametric and non-parametric surfaces, and we evaluate both system accuracy and the accuracy of typical users in touching desired targets on these surfaces. In a formative human-subject study, we examine how touch interactions are used in the context of healthcare and present an exploratory application of this method in patient simulation. A second study highlights the advantages of touch input on content-matched physical surfaces achieved by the proposed approach, such as decreases in induced cognitive load, increases in system usability, and increases in user touch performance. In this experiment, novice users were nearly as accurate when touching targets on a 3D head-shaped surface as when touching targets on a flat surface, and their self-perception of their accuracy was higher

    Presence 2005: the eighth annual international workshop on presence, 21-23 September, 2005 University College London (Conference proceedings)

    Get PDF
    OVERVIEW (taken from the CALL FOR PAPERS) Academics and practitioners with an interest in the concept of (tele)presence are invited to submit their work for presentation at PRESENCE 2005 at University College London in London, England, September 21-23, 2005. The eighth in a series of highly successful international workshops, PRESENCE 2005 will provide an open discussion forum to share ideas regarding concepts and theories, measurement techniques, technology, and applications related to presence, the psychological state or subjective perception in which a person fails to accurately and completely acknowledge the role of technology in an experience, including the sense of 'being there' experienced by users of advanced media such as virtual reality. The concept of presence in virtual environments has been around for at least 15 years, and the earlier idea of telepresence at least since Minsky's seminal paper in 1980. Recently there has been a burst of funded research activity in this area for the first time with the European FET Presence Research initiative. What do we really know about presence and its determinants? How can presence be successfully delivered with today's technology? This conference invites papers that are based on empirical results from studies of presence and related issues and/or which contribute to the technology for the delivery of presence. Papers that make substantial advances in theoretical understanding of presence are also welcome. The interest is not solely in virtual environments but in mixed reality environments. Submissions will be reviewed more rigorously than in previous conferences. High quality papers are therefore sought which make substantial contributions to the field. Approximately 20 papers will be selected for two successive special issues for the journal Presence: Teleoperators and Virtual Environments. PRESENCE 2005 takes place in London and is hosted by University College London. The conference is organized by ISPR, the International Society for Presence Research and is supported by the European Commission's FET Presence Research Initiative through the Presencia and IST OMNIPRES projects and by University College London
    • 

    corecore