43 research outputs found

    Projector-Based Augmentation

    Get PDF
    Projector-based augmentation approaches hold the potential of combining the advantages of well-establishes spatial virtual reality and spatial augmented reality. Immersive, semi-immersive and augmented visualizations can be realized in everyday environments – without the need for special projection screens and dedicated display configurations. Limitations of mobile devices, such as low resolution and small field of view, focus constrains, and ergonomic issues can be overcome in many cases by the utilization of projection technology. Thus, applications that do not require mobility can benefit from efficient spatial augmentations. Examples range from edutainment in museums (such as storytelling projections onto natural stone walls in historical buildings) to architectural visualizations (such as augmentations of complex illumination simulations or modified surface materials in real building structures). This chapter describes projector-camera methods and multi-projector techniques that aim at correcting geometric aberrations, compensating local and global radiometric effects, and improving focus properties of images projected onto everyday surfaces

    Laser Pointer Tracking in Projector-Augmented Architectural Environments

    Get PDF
    We present a system that applies a custom-built pan-tilt-zoom camera for laser-pointer tracking in arbitrary real environments. Once placed in a building environment, it carries out a fully automatic self-registration, registrations of projectors, and sampling of surface parameters, such as geometry and reflectivity. After these steps, it can be used for tracking a laser spot on the surface as well as an LED marker in 3D space, using inter-playing fisheye context and controllable detail cameras. The captured surface information can be used for masking out areas that are critical to laser-pointer tracking, and for guiding geometric and radiometric image correction techniques that enable a projector-based augmentation on arbitrary surfaces. We describe a distributed software framework that couples laser-pointer tracking for interaction, projector-based AR as well as video see-through AR for visualizations with the domain specific functionality of existing desktop tools for architectural planning, simulation and building surveying

    A Precise Controllable Projection System for Projected Virtual Characters and Its Calibration

    Get PDF
    In this paper we describe a system to project virtual characters that shall live with us in the same environment. In order to project the characters' visual representations onto room surfaces we use a controllable projector

    Projector-Based Augmentation

    Get PDF
    Projector-based augmentation approaches hold the potential of combining the advantages of well-establishes spatial virtual reality and spatial augmented reality. Immersive, semi-immersive and augmented visualizations can be realized in everyday environments – without the need for special projection screens and dedicated display configurations. Limitations of mobile devices, such as low resolution and small field of view, focus constrains, and ergonomic issues can be overcome in many cases by the utilization of projection technology. Thus, applications that do not require mobility can benefit from efficient spatial augmentations. Examples range from edutainment in museums (such as storytelling projections onto natural stone walls in historical buildings) to architectural visualizations (such as augmentations of complex illumination simulations or modified surface materials in real building structures). This chapter describes projector-camera methods and multi-projector techniques that aim at correcting geometric aberrations, compensating local and global radiometric effects, and improving focus properties of images projected onto everyday surfaces

    Laser Pointer Tracking in Projector-Augmented Architectural Environments

    Get PDF
    We present a system that applies a custom-built pan-tilt-zoom camera for laser-pointer tracking in arbitrary real environments. Once placed in a building environment, it carries out a fully automatic self-registration, registrations of projectors, and sampling of surface parameters, such as geometry and reflectivity. After these steps, it can be used for tracking a laser spot on the surface as well as an LED marker in 3D space, using inter-playing fisheye context and controllable detail cameras. The captured surface information can be used for masking out areas that are critical to laser-pointer tracking, and for guiding geometric and radiometric image correction techniques that enable a projector-based augmentation on arbitrary surfaces. We describe a distributed software framework that couples laser-pointer tracking for interaction, projector-based AR as well as video see-through AR for visualizations with the domain specific functionality of existing desktop tools for architectural planning, simulation and building surveying

    Trends and perspectives in augmented reality training

    Get PDF

    SHOW ME WHAT YOU MEAN: Gestures and drawings on physical objects as means for remote collaboration and guidance

    Get PDF
    This thesis presents findings based on the study of remote projected interaction and guidance on physical objects. First, the results are based on the study of literature and previous research in the fields of ubiqutious computing and environment, augmented reality, remote collaboration and guidance. Second, the results are based on findings through testing projector technology in remote interaction and guidance with users with the help of prototype. Previous studies indicate that guidance on physical objects is seen as valuable and in such interaction, the focus should be shifted to the actual object. This thesis contributes to previous research and suggest better integration of hand gestures and drawings into remote collaboration and guidance. Projected interaction model, described in this thesis, enhances the feeling of togetherness between remote users (expert and novice), and provides critical help in conversational grounding in remote collaboration and guidance with physical objects

    Interactive ubiquitous displays based on steerable projection

    Get PDF
    The ongoing miniaturization of computers and their embedding into the physical environment require new means of visual output. In the area of Ubiquitous Computing, flexible and adaptable display options are needed in order to enable the presentation of visual content in the physical environment. In this dissertation, we introduce the concepts of Display Continuum and Virtual Displays as new means of human-computer interaction. In this context, we present a realization of a Display Continuum based on steerable projection, and we describe a number of different interaction methods for manipulating this Display Continuum and the Virtual Displays placed on it.Mit zunehmender Miniaturisierung der Computer und ihrer Einbettung in der physikalischen Umgebung werden neue Arten der visuellen Ausgabe notwendig. Im Bereich des Ubiquitous Computing (Rechnerallgegenwart) werden flexible und anpassungsfĂ€hige Displays benötigt, um eine Anzeige von visuellen Inhalten unmittelbar in der physikalischen Umgebung zu ermöglichen. In dieser Dissertation fĂŒhren wir das Konzept des Display-Kontinuums und der Virtuellen Displays als Instrument der Mensch-Maschine-Interaktion ein. In diesem Zusammenhang prĂ€sentieren wir eine mögliche Display-Kontinuum-Realisierung, die auf der Verwendung steuerbarer Projektion basiert, und wir beschreiben mehrere verschiedene Interaktionsmethoden, mit denen man das Display-Kontinuum und die darauf platzierten Virtuellen Displays steuern kann

    Augmented reality at the workplace : a context-aware assistive system using in-situ projection

    Get PDF
    Augmented Reality has been used for providing assistance during manual assembly tasks for more than 20 years. Due to recent improvements in sensor technology, creating context-aware Augmented Reality systems, which can detect interaction accurately, becomes possible. Additionally, the increasing amount of variants of assembled products and being able to manufacture ordered products on demand, leads to an increasing complexity for assembly tasks at industrial assembly workplaces. The resulting need for cognitive support at workplaces and the availability of robust technology enables us to address real problems by using context-aware Augmented Reality to support workers during assembly tasks. In this thesis, we explore how assistive technology can be used for cognitively supporting workers in manufacturing scenarios. By following a user-centered design process, we identify key requirements for assistive systems for both continuously supporting workers and teaching assembly steps to workers. Thereby, we analyzed three different user groups: inexperienced workers, experienced workers, and workers with cognitive impairments. Based on the identified requirements, we design a general concept for providing cognitive assistance at workplaces which can be applied to multiple scenarios. For applying the proposed concept, we present four prototypes using a combination of in-situ projection and cameras for providing feedback to workers and to sense the workers' interaction with the workplace. Two of the prototypes address a manual assembly scenario and two prototypes address an order picking scenario. For the manual assembly scenario, we apply the concept to a single workplace and an assembly cell, which connects three single assembly workplaces to each other. For the order picking scenario, we present a cart-mounted prototype using in-situ projection to display picking information directly onto the warehouse. Further, we present a user-mounted prototype, exploring the design-dimension of equipping the worker with technology rather than equipping the environment. Besides the system contribution of this thesis, we explore the benefits of the created prototypes through studies with inexperienced workers, experienced workers, and cognitively impaired workers. We show that a contour visualization of in-situ feedback is the most suitable for cognitively impaired workers. Further, these contour instructions enable the cognitively impaired workers to perform assembly tasks with a complexity of up to 96 work steps. For inexperienced workers, we show that a combination of haptic and visual error feedback is appropriate to communicate errors that were made during assembly tasks. For creating interactive instructions, we introduce and evaluate a Programming by Demonstration approach. Investigating the long-term use of in-situ instructions at manual assembly workplaces, we show that instructions adapting to the workers' cognitive needs is beneficial, as continuously presenting instructions has a negative impact on the performance of both experienced and inexperienced workers. In the order picking scenario, we show that the cart-mounted in-situ instructions have a great potential as they outperform the paper-baseline. Finally, the user-mounted prototype results in a lower perceived cognitive load. Over the course of the studies, we recognized the need for a standardized way of evaluating Augmented Reality instructions. To address this issue, we propose the General Assembly Task Model, which provides two standardized baseline tasks and a noise-free way of evaluating Augmented Reality instructions for assembly tasks. Further, based on the experience, we gained from applying our assistive system in real-world assembly scenarios, we identify eight guidelines for designing assistive systems for the workplace. In conclusion, this thesis provides a basis for understanding how in-situ projection can be used for providing cognitive support at workplaces. It identifies the strengths and weaknesses of in-situ projection for cognitive assistance regarding different user groups. Therefore, the findings of this thesis contribute to the field of using Augmented Reality at the workplace. Overall, this thesis shows that using Augmented Reality for cognitively supporting workers during manual assembly tasks and order picking tasks creates a benefit for the workers when working on cognitively demanding tasks.Seit mehr als 20 Jahren wird Augmented Reality eingesetzt, um manuelle MontagetĂ€tigkeiten zu unterstĂŒtzen. Durch neue Entwicklungen in der Sensortechnologie ist es möglich, kontextsensitive Augmented-Reality-Systeme zu bauen, die Interaktionen akkurat erkennen können. Zudem fĂŒhren eine zunehmende Variantenvielfalt und die Möglichkeit, bestellte Produkte erst auf Nachfrage zu produzieren, zu einer zunehmenden KomplexitĂ€t an MontagearbeitsplĂ€tzen. Der daraus entstehende Bedarf fĂŒr kognitive UnterstĂŒtzung an ArbeitsplĂ€tzen und die VerfĂŒgbarkeit von robuster Technologie lĂ€sst uns bestehende Probleme lösen, indem wir Arbeitende wĂ€hrend Montagearbeiten mithilfe von kontextsensitiver Augmented Reality unterstĂŒtzen. In dieser Arbeit erforschen wir, wie Assistenztechnologie eingesetzt werden kann, um Arbeitende in Produktionsszenarien kognitiv zu unterstĂŒtzen. Mithilfe des User-Centered-Design-Prozess identifizieren wir SchlĂŒsselanforderungen fĂŒr Assistenzsysteme, die sowohl Arbeitende kontinuierlich unterstĂŒtzen als auch Arbeitenden Arbeitsschritte beibringen können. Dabei betrachten wir drei verschiedene Benutzergruppen: unerfahrene Arbeitende, erfahrene Arbeitende, und Arbeitende mit kognitiven Behinderungen. Auf Basis der erarbeiteten SchlĂŒsselanforderungen entwerfen wir ein allgemeines Konzept fĂŒr die Bereitstellung von kognitiver Assistenz an ArbeitsplĂ€tzen, welches in verschiedenen Szenarien angewandt werden kann. Wir prĂ€sentieren vier verschiedene Prototypen, in denen das vorgeschlagene Konzept implementiert wurde. FĂŒr die Prototypen verwenden wir eine Kombination von In-Situ-Projektion und Kameras, um Arbeitenden Feedback anzuzeigen und die Interaktionen der Arbeitenden am Arbeitsplatz zu erkennen. Zwei der Prototypen zielen auf ein manuelles Montageszenario ab, und zwei weitere Prototypen zielen auf ein Kommissionierszenario ab. Im manuellen Montageszenario wenden wir das Konzept an einem Einzelarbeitsplatz und einer Montagezelle, welche drei EinzelarbeitsplĂ€tze miteinander verbindet, an. Im Kommissionierszenario prĂ€sentieren wir einen Kommissionierwagen, der mithilfe von In-Situ-Projektion Informationen direkt ins Lager projiziert. Des Weiteren prĂ€sentieren wir einen tragbaren Prototypen, der anstatt der Umgebung den Arbeitenden mit Technologie ausstattet. Ein weiterer Beitrag dieser Arbeit ist die Erforschung der Vorteile der erstellten Prototypen durch Benutzerstudien mit erfahrenen Arbeitenden, unerfahrenen Arbeitenden und Arbeitende mit kognitiver Behinderung. Wir zeigen, dass eine Kontur-Visualisierung von In-Situ-Anleitungen die geeignetste Anleitungsform fĂŒr Arbeitende mit kognitiven Behinderungen ist. Des Weiteren befĂ€higen Kontur-basierte Anleitungen Arbeitende mit kognitiver Behinderung, an komplexeren Aufgaben zu arbeiten, welche bis zu 96 Arbeitsschritte beinhalten können. FĂŒr unerfahrene Arbeitende zeigen wir, dass sich eine Kombination von haptischem und visuellem Fehlerfeedback bewĂ€hrt hat. Wir stellen einen Ansatz vor, der eine Programmierung von interaktiven Anleitungen durch Demonstration zulĂ€sst, und evaluieren ihn. BezĂŒglich der Langzeitwirkung von In-Situ-Anleitungen an manuellen MontagearbeitsplĂ€tzen zeigen wir, dass Anleitungen, die sich den kognitiven BedĂŒrfnissen der Arbeitenden anpassen, geeignet sind, da ein kontinuierliches PrĂ€sentieren von Anleitungen einen negativen Einfluss auf die Arbeitsgeschwindigkeit von erfahrenen Arbeitenden sowohl als auch unerfahrenen Arbeitenden hat. FĂŒr das Szenario der Kommissionierung zeigen wir, dass die In-Situ-Anleitungen des Kommissionierwagens ein großes Potenzial haben, da sie zu einer schnelleren Arbeitsgeschwindigkeit fĂŒhren als traditionelle Papieranleitungen. Schlussendlich fĂŒhrt der tragbare Prototyp zu einer subjektiv niedrigeren kognitiven Last. WĂ€hrend der DurchfĂŒhrung der Studien haben wir den Bedarf einer standardisierten Evaluierungsmethode von Augmented-Reality-Anleitungen erkannt. Deshalb schlagen wir das General Assembly Task Modell vor, welches zwei standardisierte Grundaufgaben und eine Methode zur störungsfreien Analyse von Augmented-Reality-Anleitungen fĂŒr Montagearbeiten bereitstellt. Des Weiteren stellen wir auf Basis unserer Erfahrungen, die wir durch die Anwendung unseres Assistenzsystems in Montageszenarien gemacht haben, acht Richtlinien fĂŒr das Gestalten von Montageassistenzsystemen vor. Zusammenfassend bietet diese Arbeit eine Basis fĂŒr das VerstĂ€ndnis der Benutzung von In-Situ-Projektion zur Bereitstellung von kognitiver Montageassistenz. Diese Arbeit identifiziert die StĂ€rken und SchwĂ€chen von In-Situ-Projektion fĂŒr die kognitive UnterstĂŒtzung verschiedener Benutzergruppen. Folglich tragen die Resultate dieser Arbeit zum Feld der Benutzung von Augmented Reality an ArbeitsplĂ€tzen bei. Insgesamt zeigt diese Arbeit, dass die Benutzung von Augmented Reality fĂŒr die kognitive UnterstĂŒtzung von Arbeitenden wĂ€hrend kognitiv anspruchsvoller manueller MontagetĂ€tigkeiten und KommissioniertĂ€tigkeiten zu einer schnelleren Arbeitsgeschwindigkeit fĂŒhrt
    corecore