50,567 research outputs found

    The Project Scheduling Problem with Non-Deterministic Activities Duration: A Literature Review

    Get PDF
    Purpose: The goal of this article is to provide an extensive literature review of the models and solution procedures proposed by many researchers interested on the Project Scheduling Problem with nondeterministic activities duration. Design/methodology/approach: This paper presents an exhaustive literature review, identifying the existing models where the activities duration were taken as uncertain or random parameters. In order to get published articles since 1996, was employed the Scopus database. The articles were selected on the basis of reviews of abstracts, methodologies, and conclusions. The results were classified according to following characteristics: year of publication, mathematical representation of the activities duration, solution techniques applied, and type of problem solved. Findings: Genetic Algorithms (GA) was pointed out as the main solution technique employed by researchers, and the Resource-Constrained Project Scheduling Problem (RCPSP) as the most studied type of problem. On the other hand, the application of new solution techniques, and the possibility of incorporating traditional methods into new PSP variants was presented as research trends. Originality/value: This literature review contents not only a descriptive analysis of the published articles but also a statistical information section in order to examine the state of the research activity carried out in relation to the Project Scheduling Problem with non-deterministic activities duration.Peer Reviewe

    An overview of recent research results and future research avenues using simulation studies in project management

    Get PDF
    This paper gives an overview of three simulation studies in dynamic project scheduling integrating baseline scheduling with risk analysis and project control. This integration is known in the literature as dynamic scheduling. An integrated project control method is presented using a project control simulation approach that combines the three topics into a single decision support system. The method makes use of Monte Carlo simulations and connects schedule risk analysis (SRA) with earned value management (EVM). A corrective action mechanism is added to the simulation model to measure the efficiency of two alternative project control methods. At the end of the paper, a summary of recent and state-of-the-art results is given, and directions for future research based on a new research study are presented

    Project scheduling under undertainty – survey and research potentials.

    Get PDF
    The vast majority of the research efforts in project scheduling assume complete information about the scheduling problem to be solved and a static deterministic environment within which the pre-computed baseline schedule will be executed. However, in the real world, project activities are subject to considerable uncertainty, that is gradually resolved during project execution. In this survey we review the fundamental approaches for scheduling under uncertainty: reactive scheduling, stochastic project scheduling, stochastic GERT network scheduling, fuzzy project scheduling, robust (proactive) scheduling and sensitivity analysis. We discuss the potentials of these approaches for scheduling projects under uncertainty.Management; Project management; Robustness; Scheduling; Stability;

    Multi-project scheduling with 2-stage decomposition

    Get PDF
    A non-preemptive, zero time lag multi-project scheduling problem with multiple modes and limited renewable and nonrenewable resources is considered. A 2-stage decomposition approach is adopted to formulate the problem as a hierarchy of 0-1 mathematical programming models. At stage one, each project is reduced to a macro-activity with macro-modes resulting in a single project network where the objective is the maximization of the net present value and the cash flows are positive. For setting the time horizon three different methods are developed and tested. A genetic algorithm approach is designed for this problem, which is also employed to generate a starting solution for the exact solution procedure. Using the starting times and the resource profiles obtained in stage one each project is scheduled at stage two for minimum makespan. The result of the first stage is subjected to a post-processing procedure to distribute the remaining resource capacities. Three new test problem sets are generated with 81, 84 and 27 problems each and three different configurations of solution procedures are tested

    Welcome to OR&S! Where students, academics and professionals come together

    Get PDF
    In this manuscript, an overview is given of the activities done at the Operations Research and Scheduling (OR&S) research group of the faculty of Economics and Business Administration of Ghent University. Unlike the book published by [1] that gives a summary of all academic and professional activities done in the field of Project Management in collaboration with the OR&S group, the focus of the current manuscript lies on academic publications and the integration of these published results in teaching activities. An overview is given of the publications from the very beginning till today, and some of the topics that have led to publications are discussed in somewhat more detail. Moreover, it is shown how the research results have been used in the classroom to actively involve students in our research activities

    On the construction of stable project baseline schedules.

    Get PDF
    The vast majority of project scheduling efforts assume complete information about the scheduling problem to be solved and a static deterministic environment within which the pre-computed baseline schedule will be executed. In reality, however, project activities are subject to considerable uncertainty, which generally leads to numerous schedule disruptions. It is of interest to develop pre-schedules that can absorb disruptions in activity durations without affecting the planning of other activities, such that co-ordination of resources and material procurement for each of the activities can be performed as smoothly as possible. The objective of this paper is to develop and evaluate various approaches for constructing a stable pre-schedule, which is unlikely to undergo major changes when it needs to be repaired as a reaction to minor activity duration disruptions.

    The trade-off between stability and makespan in resource-constrained project scheduling.

    Get PDF
    During the last decade, considerable research efforts in the project scheduling literature have concentrated on resource-constrained project scheduling under uncertainty. Most of this research focuses on protecting the project due date against disruptions during execution. Few efforts have been made to protect the starting times of intermediate activities. In this paper, we develop a heuristic algorithm for minimizing a stability cost function (weighted sum of deviations between planned and realized activity starting times). The algorithm basically proposes a clever way to scatter time buffers throughout the baseline schedule. We provide an extensive simulation experiment to investigate the trade-off between quality robustness (measured in terms of project duration) and solution robustness (stability). We address the issue whether to concentrate safety time in so-called project and feeding buffers in order to protect the planned project completion time or to scatter safety time throughout the baseline schedule in order to enhance stability.Project management; Scheduling/sequencing; Simulation methods;

    Decision-based genetic algorithms for solving multi-period project scheduling with dynamically experienced workforce

    Get PDF
    The importance of the flexibility of resources increased rapidly with the turbulent changes in the industrial context, to meet the customers’ requirements. Among all resources, the most important and considered as the hardest to manage are human resources, in reasons of availability and/or conventions. In this article, we present an approach to solve project scheduling with multi-period human resources allocation taking into account two flexibility levers. The first is the annual hours and working time regulation, and the second is the actors’ multi-skills. The productivity of each operator was considered as dynamic, developing or degrading depending on the prior allocation decisions. The solving approach mainly uses decision-based genetic algorithms, in which, chromosomes don’t represent directly the problem solution; they simply present three decisions: tasks’ priorities for execution, actors’ priorities for carrying out these tasks, and finally the priority of working time strategy that can be considered during the specified working period. Also the principle of critical skill was taken into account. Based on these decisions and during a serial scheduling generating scheme, one can in a sequential manner introduce the project scheduling and the corresponding workforce allocations

    Resource-constrained project scheduling for timely project completion with stochastic activity durations.

    Get PDF
    We investigate resource-constrained project scheduling with stochastic activity durations. Various objective functions related to timely project completion are examined, as well as the correlation between these objectives. We develop a GRASP-heuristic to produce high-quality solutions, using so-called descriptive sampling. The algorithm outperforms other existing algorithms for expected-makespan minimization. The distribution of the possible makespan realizations for a given scheduling policy is studied, and problem difficulty is explored as a function of problem parameters.GRASP; Project scheduling; Uncertainty;
    corecore