7,347 research outputs found

    Implementing a hybrid series bus with gas turbine device - a preliminary study

    Get PDF
    This paper presents the implementation of an hybrid series Bus with a gas turbine, as thermal engine. The hybridization methodology for transforming city buses, substituting the original gasoline/diesel engine with a micro gas turbine device (intended as range extender), into a series hybrid vehicle has investigated and its feasibility analyzed. The study was conducted by the university of Rome “Sapienza” in collaboration with several enterprises. The idea is to design a hybrid power train that can be installed in a typical city bus, which means that all systems and components will be influenced by the limited space available. In this paper the details of the mechanical and electrical realization of the power train will be discussed. The hybrid system also includes consideration on the battery pack and the vehicle management logic. The proposed solution obtains a reduction in fuel consumption higher than 20%, in comparison with normal commercial fleet

    SELF-BALANCING MOBILE ROBOT TILTER

    Get PDF
    In this project a remote controlled self-balancing mobile robot was designed, built and controlled. This paper gives a summary of the work done in the fields of mechanical design, electronics, software design, system characterization and control theory. This wide array of fields necessary for the realization of the project holds the project up as a leading example in the field of mechatronics. In the paper special focus will be on the modelling of the robotic system and the simulation results of various control methods required for the stabilization of the system

    Urban and extra-urban hybrid vehicles: a technological review

    Get PDF
    Pollution derived from transportation systems is a worldwide, timelier issue than ever. The abatement actions of harmful substances in the air are on the agenda and they are necessary today to safeguard our welfare and that of the planet. Environmental pollution in large cities is approximately 20% due to the transportation system. In addition, private traffic contributes greatly to city pollution. Further, “vehicle operating life” is most often exceeded and vehicle emissions do not comply with European antipollution standards. It becomes mandatory to find a solution that respects the environment and, realize an appropriate transportation service to the customers. New technologies related to hybrid –electric engines are making great strides in reducing emissions, and the funds allocated by public authorities should be addressed. In addition, the use (implementation) of new technologies is also convenient from an economic point of view. In fact, by implementing the use of hybrid vehicles, fuel consumption can be reduced. The different hybrid configurations presented refer to such a series architecture, developed by the researchers and Research and Development groups. Regarding energy flows, different strategy logic or vehicle management units have been illustrated. Various configurations and vehicles were studied by simulating different driving cycles, both European approval and homologation and customer ones (typically municipal and university). The simulations have provided guidance on the optimal proposed configuration and information on the component to be used

    Design of an Active-Assistance Balancing Mechanism for a Bicycle

    Get PDF
    The goal of this project is to design and build a prototype self balancing bicycle for use as a teaching tool for someone learning to ride a bicycle and as means for a disabled person to ride a bicycle who would otherwise not be able to do so. The project consists of a research phase in which similar systems have been investigated to help determine a sensible design approach and to establish appropriate design specifications; a design phase in which a prototype was designed to meet the aforementioned specifications; and a construction phase, in which the prototype was built and tested

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information

    Implementing a Hybrid Series Bus with Gas Turbine Device - A Preliminary Study

    Full text link
    This paper presents the implementation of an hybrid series Bus with a gas turbine, as thermal engine. The hybridization methodology for transforming city buses, substituting the original gasoline/diesel engine with a micro gas turbine device (intended as range extender), into a series hybrid vehicle has investigated and its feasibility analyzed. The study was conducted by the university of Rome “Sapienza” in collaboration with several enterprises. The idea is to design a hybrid power train that can be installed in a typical city bus, which means that all systems and components will be influenced by the limited space available. In this paper the details of the mechanical and electrical realization of the power train will be discussed. The hybrid system also includes consideration on the battery pack and the vehicle management logic. The proposed solution obtains a reduction in fuel consumption higher than 20%, in comparison with normal commercial fleet

    Electric vehicle realization and related research

    Get PDF
    corecore