396 research outputs found

    PIDray: A Large-scale X-ray Benchmark for Real-World Prohibited Item Detection

    Full text link
    Automatic security inspection relying on computer vision technology is a challenging task in real-world scenarios due to many factors, such as intra-class variance, class imbalance, and occlusion. Most previous methods rarely touch the cases where the prohibited items are deliberately hidden in messy objects because of the scarcity of large-scale datasets, hindering their applications. To address this issue and facilitate related research, we present a large-scale dataset, named PIDray, which covers various cases in real-world scenarios for prohibited item detection, especially for deliberately hidden items. In specific, PIDray collects 124,486 X-ray images for 1212 categories of prohibited items, and each image is manually annotated with careful inspection, which makes it, to our best knowledge, to largest prohibited items detection dataset to date. Meanwhile, we propose a general divide-and-conquer pipeline to develop baseline algorithms on PIDray. Specifically, we adopt the tree-like structure to suppress the influence of the long-tailed issue in the PIDray dataset, where the first course-grained node is tasked with the binary classification to alleviate the influence of head category, while the subsequent fine-grained node is dedicated to the specific tasks of the tail categories. Based on this simple yet effective scheme, we offer strong task-specific baselines across object detection, instance segmentation, and multi-label classification tasks and verify the generalization ability on common datasets (e.g., COCO and PASCAL VOC). Extensive experiments on PIDray demonstrate that the proposed method performs favorably against current state-of-the-art methods, especially for deliberately hidden items. Our benchmark and codes will be released at https://github.com/lutao2021/PIDray.Comment: Tech. report. arXiv admin note: text overlap with arXiv:2108.0702

    Meta-Transfer Learning Driven Tensor-Shot Detector for the Autonomous Localization and Recognition of Concealed Baggage Threats

    Get PDF
    Screening baggage against potential threats has become one of the prime aviation security concerns all over the world, where manual detection of prohibited items is a time-consuming and hectic process. Many researchers have developed autonomous systems to recognize baggage threats using security X-ray scans. However, all of these frameworks are vulnerable against screening cluttered and concealed contraband items. Furthermore, to the best of our knowledge, no framework possesses the capacity to recognize baggage threats across multiple scanner specifications without an explicit retraining process. To overcome this, we present a novel meta-transfer learning-driven tensor-shot detector that decomposes the candidate scan into dual-energy tensors and employs a meta-one-shot classification backbone to recognize and localize the cluttered baggage threats. In addition, the proposed detection framework can be well-generalized to multiple scanner specifications due to its capacity to generate object proposals from the unified tensor maps rather than diversified raw scans. We have rigorously evaluated the proposed tensor-shot detector on the publicly available SIXray and GDXray datasets (containing a cumulative of 1,067,381 grayscale and colored baggage X-ray scans). On the SIXray dataset, the proposed framework achieved a mean average precision (mAP) of 0.6457, and on the GDXray dataset, it achieved the precision and F1 score of 0.9441 and 0.9598, respectively. Furthermore, it outperforms state-of-the-art frameworks by 8.03% in terms of mAP, 1.49% in terms of precision, and 0.573% in terms of F1 on the SIXray and GDXray dataset, respectively

    Object Detection in X-ray Images Using Transfer Learning with Data Augmentation

    Get PDF
    Object detection in X-ray images is an interesting problem in the field of machine vision. The reason is that images from an X-ray machine are usually obstructed with other objects and to itself, therefore object classification and localization is a challenging task. Furthermore, obtaining X-ray data is difficult due to an insufficient dataset available compared with photographic images from a digital camera. It is vital to easily detect objects in an X-ray image because it can be used as decision support in the detection of threat items such as improvised explosive devices (IED’s) in airports, train stations, and public places. Detection of IED components accurately requires an expert and can be achieved through extensive training. Also, manual inspection is tedious, and the probability of missed detection increases due to several pieces of baggage are scanned in a short period of time. As a solution, this paper used different object detection techniques (Faster R-CNN, SSD, R-FCN) and feature extractors (ResNet, MobileNet, Inception, Inception-ResNet) based on convolutional neural networks (CNN) in a novel IEDXray dataset in the detection of IED components. The IEDXray dataset is an X-ray image of IED replicas without the explosive material. Transfer learning with data augmentation was performed due to limited X-ray data available to train the whole network from scratch. Evaluation results showed that individual detection achieved 99.08% average precision (AP) in mortar detection and 77.29% mAP in three IED components

    Atomic number prior guided network for prohibited items detection from heavily cluttered X-ray imagery

    Get PDF
    Prohibited item detection in X-ray images is an effective measure to maintain public safety. Recent prohibited item detection methods based on deep learning has achieved impressive performance. Some methods improve prohibited item detection performance by introducing prior knowledge of prohibited items, such as the edge and size of an object. However, items within baggage are often placed randomly, resulting in cluttered X-ray images, which can seriously affect the correctness and effectiveness of prior knowledge. In particular, we find that different material items in X-ray images have clear distinctions according to their atomic number Z information, which is vital to suppress the interference of irrelevant background information by mining material cues. Inspired by this observation, in this paper, we combined the atomic number Z feature and proposed a novel atomic number Z Prior Guided Network (ZPGNet) to detect prohibited objects from heavily cluttered X-ray images. Specifically, we propose a Material Activation (MA) module that cross-scale flows the atomic number Z information through the network to mine material clues and reduce irrelevant information interference in detecting prohibited items. However, collecting atomic number images requires much labor, increasing costs. Therefore, we propose a method to automatically generate atomic number Z images by exploring the color information of X-ray images, which significantly reduces the manual acquisition cost. Extensive experiments demonstrate that our method can accurately and robustly detect prohibited items from heavily cluttered X-ray images. Furthermore, we extensively evaluate our method on HiXray and OPIXray, and the best result is 2.1% mAP50 higher than the state-of-the-art models on HiXray

    Towards Real-Time Anomaly Detection within X-ray Security Imagery: Self-Supervised Adversarial Training Approach

    Get PDF
    Automatic threat detection is an increasingly important area in X-ray security imaging since it is critical to aid screening operators to identify concealed threats. Due to the cluttered and occluded nature of X-ray baggage imagery and limited dataset availability, few studies in the literature have systematically evaluated the automated X-ray security screening. This thesis provides an exhaustive evaluation of the use of deep Convolutional Neural Networks (CNN) for the image classification and detection problems posed within the field. The use of transfer learning overcomes the limited availability of the object of interest data examples. A thorough evaluation reveals the superiority of the CNN features over conventional hand-crafted features. Further experimentation also demonstrates the capability of the supervised deep object detection techniques as object localization strategies within cluttered X-ray security imagery. By addressing the limitations of the current X-ray datasets such as annotation and class-imbalance, the thesis subsequently transitions the scope to- wards deep unsupervised techniques for the detection of anomalies based on the training on normal (benign) X-ray samples only. The proposed anomaly detection models within the thesis employ a conditional encoder-decoder generative adversarial network that jointly learns the generation of high-dimensional image space and the inference of latent space — minimizing the distance between these images and the latent vectors during training aids in learning the data distribution for the normal samples. As a result, a larger distance metric from this learned data distribution at inference time is indicative of an outlier from that distribution — an anomaly. Experimentation over several benchmark datasets, from varying domains, shows the model efficacy and superiority over previous state-of-the-art approaches. Based on the current approaches and open problems in deep learning, the thesis finally provides discussion and future directions for X-ray security imagery

    A Step toward Ending Long Airport Security Lines: The Modified Boarding Pass

    Get PDF
    Anyone who has traveled by air has most likely experienced long airport security lines. Yet not much is known about its cause because few have considered if passengers have created this problem for themselves. The present study attempts to fill this research gap by suggesting that when passengers are not well-prepared for security screening, they delay the process by making mistakes and not complying with procedures. This lack of preparedness can be attributed to several shortcomings of security signposts. This study proposes the use of a modified boarding pass as an alternative form of signage to help passengers better prepare for security screening. In a recall evaluation of the items to remove prior to security screening, the combination of the modified boarding pass and security signposts led to greater recall than when either stimuli were used alone. In an airport survey to gather public sentiment, three-quarters of the respondents saw value in the idea of the modified boarding pass. Although the majority of the respondents were receptive to it becoming an option for future travel, many also felt that the modified boarding pass would be more useful than security signposts or announcements at conveying helpful security screening information

    A Survey on Physical Adversarial Attack in Computer Vision

    Full text link
    Over the past decade, deep learning has revolutionized conventional tasks that rely on hand-craft feature extraction with its strong feature learning capability, leading to substantial enhancements in traditional tasks. However, deep neural networks (DNNs) have been demonstrated to be vulnerable to adversarial examples crafted by malicious tiny noise, which is imperceptible to human observers but can make DNNs output the wrong result. Existing adversarial attacks can be categorized into digital and physical adversarial attacks. The former is designed to pursue strong attack performance in lab environments while hardly remaining effective when applied to the physical world. In contrast, the latter focus on developing physical deployable attacks, thus exhibiting more robustness in complex physical environmental conditions. Recently, with the increasing deployment of the DNN-based system in the real world, strengthening the robustness of these systems is an emergency, while exploring physical adversarial attacks exhaustively is the precondition. To this end, this paper reviews the evolution of physical adversarial attacks against DNN-based computer vision tasks, expecting to provide beneficial information for developing stronger physical adversarial attacks. Specifically, we first proposed a taxonomy to categorize the current physical adversarial attacks and grouped them. Then, we discuss the existing physical attacks and focus on the technique for improving the robustness of physical attacks under complex physical environmental conditions. Finally, we discuss the issues of the current physical adversarial attacks to be solved and give promising directions
    • …
    corecore