1,319 research outputs found

    Selected Topics in Bayesian Image/Video Processing

    Get PDF
    In this dissertation, three problems in image deblurring, inpainting and virtual content insertion are solved in a Bayesian framework.;Camera shake, motion or defocus during exposure leads to image blur. Single image deblurring has achieved remarkable results by solving a MAP problem, but there is no perfect solution due to inaccurate image prior and estimator. In the first part, a new non-blind deconvolution algorithm is proposed. The image prior is represented by a Gaussian Scale Mixture(GSM) model, which is estimated from non-blurry images as training data. Our experimental results on a total twelve natural images have shown that more details are restored than previous deblurring algorithms.;In augmented reality, it is a challenging problem to insert virtual content in video streams by blending it with spatial and temporal information. A generic virtual content insertion (VCI) system is introduced in the second part. To the best of my knowledge, it is the first successful system to insert content on the building facades from street view video streams. Without knowing camera positions, the geometry model of a building facade is established by using a detection and tracking combined strategy. Moreover, motion stabilization, dynamic registration and color harmonization contribute to the excellent augmented performance in this automatic VCI system.;Coding efficiency is an important objective in video coding. In recent years, video coding standards have been developing by adding new tools. However, it costs numerous modifications in the complex coding systems. Therefore, it is desirable to consider alternative standard-compliant approaches without modifying the codec structures. In the third part, an exemplar-based data pruning video compression scheme for intra frame is introduced. Data pruning is used as a pre-processing tool to remove part of video data before they are encoded. At the decoder, missing data is reconstructed by a sparse linear combination of similar patches. The novelty is to create a patch library to exploit similarity of patches. The scheme achieves an average 4% bit rate reduction on some high definition videos

    A deep learning framework for quality assessment and restoration in video endoscopy

    Full text link
    Endoscopy is a routine imaging technique used for both diagnosis and minimally invasive surgical treatment. Artifacts such as motion blur, bubbles, specular reflections, floating objects and pixel saturation impede the visual interpretation and the automated analysis of endoscopy videos. Given the widespread use of endoscopy in different clinical applications, we contend that the robust and reliable identification of such artifacts and the automated restoration of corrupted video frames is a fundamental medical imaging problem. Existing state-of-the-art methods only deal with the detection and restoration of selected artifacts. However, typically endoscopy videos contain numerous artifacts which motivates to establish a comprehensive solution. We propose a fully automatic framework that can: 1) detect and classify six different primary artifacts, 2) provide a quality score for each frame and 3) restore mildly corrupted frames. To detect different artifacts our framework exploits fast multi-scale, single stage convolutional neural network detector. We introduce a quality metric to assess frame quality and predict image restoration success. Generative adversarial networks with carefully chosen regularization are finally used to restore corrupted frames. Our detector yields the highest mean average precision (mAP at 5% threshold) of 49.0 and the lowest computational time of 88 ms allowing for accurate real-time processing. Our restoration models for blind deblurring, saturation correction and inpainting demonstrate significant improvements over previous methods. On a set of 10 test videos we show that our approach preserves an average of 68.7% which is 25% more frames than that retained from the raw videos.Comment: 14 page

    An Improved Adaptive Deconvolution Algorithm for Single Image Deblurring

    Get PDF
    One of the most common defects in digital photography is motion blur caused by camera shake. Shift-invariant motion blur can be modeled as a convolution of the true latent image and a point spread function (PSF) with additive noise. The goal of image deconvolution is to reconstruct a latent image from a degraded image. However, ringing is inevitable artifacts arising in the deconvolution stage. To suppress undesirable artifacts, regularization based methods have been proposed using natural image priors to overcome the ill-posedness of deconvolution problem. When the estimated PSF is erroneous to some extent or the PSF size is large, conventional regularization to reduce ringing would lead to loss of image details. This paper focuses on the nonblind deconvolution by adaptive regularization which preserves image details, while suppressing ringing artifacts. The way is to control the regularization weight adaptively according to the image local characteristics. We adopt elaborated reference maps that indicate the edge strength so that textured and smooth regions can be distinguished. Then we impose an appropriate constraint on the optimization process. The experiments’ results on both synthesized and real images show that our method can restore latent image with much fewer ringing and favors the sharp edges

    Blur-Robust Face Recognition via Transformation Learning

    Full text link
    Abstract. This paper introduces a new method for recognizing faces degraded by blur using transformation learning on the image feature. The basic idea is to transform both the sharp images and blurred im-ages to a same feature subspace by the method of multidimensional s-caling. Different from the method of finding blur-invariant descriptors, our method learns the transformation which both preserves the mani-fold structure of the original shape images and, at the same time, en-hances the class separability, resulting in a wide applications to various descriptors. Furthermore, we combine our method with subspace-based point spread function (PSF) estimation method to handle cases of un-known blur degree, by applying the feature transformation correspond-ing to the best matched PSF, where the transformation for each PSF is learned in the training stage. Experimental results on the FERET database show the proposed method achieve comparable performance a-gainst the state-of-the-art blur-invariant face recognition methods, such as LPQ and FADEIN.
    • …
    corecore