8,585 research outputs found

    Attributing scientific and technical progress: the case of holography

    Get PDF
    Holography, the three-dimensional imaging technology, was portrayed widely as a paradigm of progress during its decade of explosive expansion 1964–73, and during its subsequent consolidation for commercial and artistic uses up to the mid 1980s. An unusually seductive and prolific subject, holography successively spawned scientific insights, putative applications and new constituencies of practitioners and consumers. Waves of forecasts, associated with different sponsors and user communities, cast holography as a field on the verge of success—but with the dimensions of success repeatedly refashioned. This retargeting of the subject represented a degree of cynical marketeering, but was underpinned by implicit confidence in philosophical positivism and faith in technological progressivism. Each of its communities defined success in terms of expansion, and anticipated continual progressive increase. This paper discusses the contrasting definitions of progress in holography, and how they were fashioned in changing contexts. Focusing equally on reputed ‘failures’ of some aspects of the subject, it explores the varied attributes by which success and failure were linked with progress by different technical communities. This important case illuminates the peculiar post-World War II environment that melded the military, commercial and popular engagement with scientific and technological subjects, and the competing criteria by which they assessed the products of science

    Attributing scientific and technological progress: The case of holography

    Get PDF
    Holography, the three-dimensional imaging technology, was portrayed widely as a paradigm of progress during its decade of explosive expansion 1964–73, and during its subsequent consolidation for commercial and artistic uses up to the mid 1980s. An unusually seductive and prolific subject, holography successively spawned scientific insights, putative applications and new constituencies of practitioners and consumers. Waves of forecasts, associated with different sponsors and user communities, cast holography as a field on the verge of success—but with the dimensions of success repeatedly refashioned. This retargeting of the subject represented a degree of cynical marketeering, but was underpinned by implicit confidence in philosophical positivism and faith in technological progressivism. Each of its communities defined success in terms of expansion, and anticipated continual progressive increase. This paper discusses the contrasting definitions of progress in holography, and how they were fashioned in changing contexts. Focusing equally on reputed ‘failures’ of some aspects of the subject, it explores the varied attributes by which success and failure were linked with progress by different technical communities. This important case illuminates the peculiar post-World War II environment that melded the military, commercial and popular engagement with scientific and technological subjects, and the competing criteria by which they assessed the products of science

    Airborne Visible/Infrared Imaging spectrometer AVIS: Design, characterization and calibration

    Get PDF
    The Airborne Visible/Infrared imaging Spectrometer AVIS is a hyperspectral imager designed for environmental monitoring purposes. The sensor, which was constructed entirely from commercially available components, has been successfully deployed during several experiments between 1999 and 2007. We describe the instrument design and present the results of laboratory characterization and calibration of the system's second generation, AVIS-2, which is currently being operated. The processing of the data is described and examples of remote sensing reflectance data are presented

    The parallax view: the military origins of holography

    Get PDF
    The title of this piece is meant to evoke at least three sources. The first – and perhaps the only obvious one – concerns the ability of holograms to display parallax, a shifting of visual viewpoint that allows a three-dimensional image to reveal background objects behind those in the foreground. This parallax view is a unique feature of holograms as visual media. A second allusion is to the American film The Parallax View (1974, director A. J. Pakula), a rather paranoid thriller focusing on conspiracy theories concerning government and corporations. To a casual observer, the bare details of the military origins of holography suggest just such cynical and centrally-directed development, although I hope to dispel such simplistic ideas here. And a third passing reference is to the book The Parallax View (2006) by Slavoj Zizek, a wide-ranging and deep exploration of duality in political views, ontological interpretations and scientific methods, among other topics. Zizek’s theme, as well as Pakula’s, is relevant to my approach, which focuses on a parallax of both practice and intent. During the first successful decade of holography, conflicting viewpoints developed between distinct communities: the militarily-guided engineers who invented practical holography, and the later imaging scientists and artisans who stressed three-dimensionality and other attributes instead of the original goal of optical image processing. I argue that distinct groups of users had different perceptions of what holography is and what it is for

    The future of ischemic stroke: flow from prehospital neuroprotection to definitive reperfusion.

    Get PDF
    Recent advances in ischemic stroke enable a seamless transition of the patient flow from the prehospital setting to definitive reperfusion, without the arbitrary separation of therapeutic phases of ischemia based on time alone. In 2013, the framework to understand and directly address the pathophysiology of cerebral blood flow that determines the timeline or evolution of ischemia in an individual case is given. This continuum of flow and the homeostasis of brain perfusion balanced by collaterals may be captured with serial imaging. Ongoing imaging core laboratory activities permit large-scale measurement of angiographic and tissue biomarkers of ischemia. Prehospital neuroprotection has become a reality and may be combined with revascularization therapies. Recent studies confirm that image-guided thrombolysis may be achieved without restrictive time windows. Baseline imaging patterns may be used to predict response to therapy and serial imaging may discern recanalization and reperfusion. Advanced techniques, such as arterial spin-labeled MRI, may also report hyperperfusion associated with hemorrhagic transformation. Endovascular therapies, including novel stent retriever devices, may augment revascularization and angiographic core laboratories may define optimal reperfusion. Serial evaluation of collaterals and reperfusion may identify definitive reperfusion linked with good clinical outcome rather than imposing arbitrary definitions of effective recanalization. Reperfusion injury and hemorrhagic transformation of various types may be detailed to explain clinical outcomes. Similar approaches may be used in intracranial atherosclerosis where flow, and not the degree of luminal stenosis, is paramount. Fractional flow may now be measured with computational fluid dynamics to identify high-risk lesions that require revascularization to restore the equilibrium of antegrade and collateral perfusion. Serial perfusion imaging of such cases may also illustrate inadequate cerebral blood volume gradients that may be more informative than blood flow delay alone. In sum, the growing understanding of collateral perfusion throughout all stages of ischemic stroke provides a framework for the future of ischemic stroke
    corecore