1,353 research outputs found

    Reasoning & Querying – State of the Art

    Get PDF
    Various query languages for Web and Semantic Web data, both for practical use and as an area of research in the scientific community, have emerged in recent years. At the same time, the broad adoption of the internet where keyword search is used in many applications, e.g. search engines, has familiarized casual users with using keyword queries to retrieve information on the internet. Unlike this easy-to-use querying, traditional query languages require knowledge of the language itself as well as of the data to be queried. Keyword-based query languages for XML and RDF bridge the gap between the two, aiming at enabling simple querying of semi-structured data, which is relevant e.g. in the context of the emerging Semantic Web. This article presents an overview of the field of keyword querying for XML and RDF

    Keyword Search in Relational Databases: Architecture, Approaches and Considerations

    Get PDF
    Questo lavoro di tesi presenta le diverse soluzioni proposte in letteratura per applicare il paradigma keyword search alle basi di dati relazionali, e vuole delineare una architettura generale per definire e sviluppare questi sistemi. A tal proposito, le soluzioni presentate dalla comunità scientifica sono state analizzate focalizzandosi sui singoli componenti della pipeline di ricerca. Infine, si sono analizzati i processi di valutazione sperimentale di questi sistem

    Distributed Information Retrieval using Keyword Auctions

    Get PDF
    This report motivates the need for large-scale distributed approaches to information retrieval, and proposes solutions based on keyword auctions

    Ranked Spatial-keyword Search over Web-accessible Geotagged Data: State of the Art

    Get PDF
    Search engines, such as Google and Yahoo!, provide efficient retrieval and ranking of web pages based on queries consisting of a set of given keywords. Recent studies show that 20% of all Web queries also have location constraints, i.e., also refer to the location of a geotagged web page. An increasing number of applications support location based keyword search, including Google Maps, Bing Maps, Yahoo! Local, and Yelp. Such applications depict points of interest on the map and combine their location with the keywords provided by the associated document(s). The posed queries consist of two conditions: a set of keywords and a spatial location. The goal is to find points of interest with these keywords close to the location. We refer to such a query as spatial-keyword query. Moreover, mobile devices nowadays are enhanced with built-in GPS receivers, which permits applications (such as search engines or yellow page services) to acquire the location of the user implicitly, and provide location-based services. For instance, Google Mobile App provides a simple search service for smartphones where the location of the user is automatically captured and employed to retrieve results relevant to her current location. As an example, a search for ”pizza” results in a list of pizza restaurants nearby the user. Given the popularity of spatial-keyword queries and their wide applicability in practical scenarios, it is critical to (i) establish mechanisms for efficient processing of spatial-keyword queries, and (ii) support more expressive query formulation by means of novel 1 query types. Although studies on both keyword search and spatial queries do exist, the problem of combining the search capabilities of both simultaneously has received little attention

    Distributed top-k aggregation queries at large

    Get PDF
    Top-k query processing is a fundamental building block for efficient ranking in a large number of applications. Efficiency is a central issue, especially for distributed settings, when the data is spread across different nodes in a network. This paper introduces novel optimization methods for top-k aggregation queries in such distributed environments. The optimizations can be applied to all algorithms that fall into the frameworks of the prior TPUT and KLEE methods. The optimizations address three degrees of freedom: 1) hierarchically grouping input lists into top-k operator trees and optimizing the tree structure, 2) computing data-adaptive scan depths for different input sources, and 3) data-adaptive sampling of a small subset of input sources in scenarios with hundreds or thousands of query-relevant network nodes. All optimizations are based on a statistical cost model that utilizes local synopses, e.g., in the form of histograms, efficiently computed convolutions, and estimators based on order statistics. The paper presents comprehensive experiments, with three different real-life datasets and using the ns-2 network simulator for a packet-level simulation of a large Internet-style network

    Efficient Web Service Discovery and Selection Model

    Get PDF
    Selection of an optimal web service is a challenging task due to the uncertainty of Quality of Service, which is the deciding factor to identify the accurate web service. Several discovery mechanisms have proposed but most of the research work does not consider the non-functional characteristics called Quality of service. The proposed model for web service selection combines two techniques. First, with Skyline method reduce the search space by filtering the redundant service and secondly to calculate the Relevancy function to normalize the skyline services. The experimental results show that the proposed technique outperforms the existing method
    corecore