12,557 research outputs found

    Distortion Exponent in MIMO Channels with Feedback

    Full text link
    The transmission of a Gaussian source over a block-fading multiple antenna channel in the presence of a feedback link is considered. The feedback link is assumed to be an error and delay free link of capacity 1 bit per channel use. Under the short-term power constraint, the optimal exponential behavior of the end-to-end average distortion is characterized for all source-channel bandwidth ratios. It is shown that the optimal transmission strategy is successive refinement source coding followed by progressive transmission over the channel, in which the channel block is allocated dynamically among the layers based on the channel state using the feedback link as an instantaneous automatic repeat request (ARQ) signal.Comment: Presented at the IEEE Information Theory Workshop (ITW), Taormina, Italy, Oct. 200

    Joint source-channel coding with feedback

    Get PDF
    This paper quantifies the fundamental limits of variable-length transmission of a general (possibly analog) source over a memoryless channel with noiseless feedback, under a distortion constraint. We consider excess distortion, average distortion and guaranteed distortion (dd-semifaithful codes). In contrast to the asymptotic fundamental limit, a general conclusion is that allowing variable-length codes and feedback leads to a sizable improvement in the fundamental delay-distortion tradeoff. In addition, we investigate the minimum energy required to reproduce kk source samples with a given fidelity after transmission over a memoryless Gaussian channel, and we show that the required minimum energy is reduced with feedback and an average (rather than maximal) power constraint.Comment: To appear in IEEE Transactions on Information Theor

    An Adaptive Source-Channel Coding with Feedback for Progressive Transmission of Medical Images

    Get PDF
    A novel adaptive source-channel coding with feedback for progressive transmission of medical images is proposed here. In the source coding part, the transmission starts from the region of interest (RoI). The parity length in the channel code varies with respect to both the proximity of the image subblock to the RoI and the channel noise, which is iteratively estimated in the receiver. The overall transmitted data can be controlled by the user (clinician). In the case of medical data transmission, it is vital to keep the distortion level under control as in most of the cases certain clinically important regions have to be transmitted without any visible error. The proposed system significantly reduces the transmission time and error. Moreover, the system is very user friendly since the selection of the RoI, its size, overall code rate, and a number of test features such as noise level can be set by the users in both ends. A MATLAB-based TCP/IP connection has been established to demonstrate the proposed interactive and adaptive progressive transmission system. The proposed system is simulated for both binary symmetric channel (BSC) and Rayleigh channel. The experimental results verify the effectiveness of the design
    corecore