1,787 research outputs found

    A Comprehensive Performance Evaluation of Deformable Face Tracking "In-the-Wild"

    Full text link
    Recently, technologies such as face detection, facial landmark localisation and face recognition and verification have matured enough to provide effective and efficient solutions for imagery captured under arbitrary conditions (referred to as "in-the-wild"). This is partially attributed to the fact that comprehensive "in-the-wild" benchmarks have been developed for face detection, landmark localisation and recognition/verification. A very important technology that has not been thoroughly evaluated yet is deformable face tracking "in-the-wild". Until now, the performance has mainly been assessed qualitatively by visually assessing the result of a deformable face tracking technology on short videos. In this paper, we perform the first, to the best of our knowledge, thorough evaluation of state-of-the-art deformable face tracking pipelines using the recently introduced 300VW benchmark. We evaluate many different architectures focusing mainly on the task of on-line deformable face tracking. In particular, we compare the following general strategies: (a) generic face detection plus generic facial landmark localisation, (b) generic model free tracking plus generic facial landmark localisation, as well as (c) hybrid approaches using state-of-the-art face detection, model free tracking and facial landmark localisation technologies. Our evaluation reveals future avenues for further research on the topic.Comment: E. Antonakos and P. Snape contributed equally and have joint second authorshi

    Towards Precision Psychiatry: gray Matter Development And Cognition In Adolescence

    Get PDF
    Precision Psychiatry promises a new era of optimized psychiatric diagnosis and treatment through comprehensive, data-driven patient stratification. Among the core requirements towards that goal are: 1) neurobiology-guided preprocessing and analysis of brain imaging data for noninvasive characterization of brain structure and function, and 2) integration of imaging, genomic, cognitive, and clinical data in accurate and interpretable predictive models for diagnosis, and treatment choice and monitoring. In this thesis, we shall touch on specific aspects that fit under these two broad points. First, we investigate normal gray matter development around adolescence, a critical period for the development of psychopathology. For years, the common narrative in human developmental neuroimaging has been that gray matter declines in adolescence. We demonstrate that different MRI-derived gray matter measures exhibit distinct age and sex effects and should not be considered equivalent, as has often been done in the past, but complementary. We show for the first time that gray matter density increases from childhood to young adulthood, in contrast with gray matter volume and cortical thickness, and that females, who are known to have lower gray matter volume than males, have higher density throughout the brain. A custom preprocessing pipeline and a novel high-resolution gray matter parcellation were created to analyze brain scans of 1189 youths collected as part of the Philadelphia Neurodevelopmental Cohort. This work emphasizes the need for future studies combining quantitative histology and neuroimaging to fully understand the biological basis of MRI contrasts and their derived measures. Second, we use the same gray matter measures to assess how well they can predict cognitive performance. We train mass-univariate and multivariate models to show that gray matter volume and density are complementary in their ability to predict performance. We suggest that parcellation resolution plays a big role in prediction accuracy and that it should be tuned separately for each modality for a fair comparison among modalities and for an optimal prediction when combining all modalities. Lastly, we introduce rtemis, an R package for machine learning and visualization, aimed at making advanced data analytics more accessible. Adoption of accurate and interpretable machine learning methods in basic research and medical practice will help advance biomedical science and make precision medicine a reality

    Reasoning with Uncertainty in Deep Learning for Safer Medical Image Computing

    Get PDF
    Deep learning is now ubiquitous in the research field of medical image computing. As such technologies progress towards clinical translation, the question of safety becomes critical. Once deployed, machine learning systems unavoidably face situations where the correct decision or prediction is ambiguous. However, the current methods disproportionately rely on deterministic algorithms, lacking a mechanism to represent and manipulate uncertainty. In safety-critical applications such as medical imaging, reasoning under uncertainty is crucial for developing a reliable decision making system. Probabilistic machine learning provides a natural framework to quantify the degree of uncertainty over different variables of interest, be it the prediction, the model parameters and structures, or the underlying data (images and labels). Probability distributions are used to represent all the uncertain unobserved quantities in a model and how they relate to the data, and probability theory is used as a language to compute and manipulate these distributions. In this thesis, we explore probabilistic modelling as a framework to integrate uncertainty information into deep learning models, and demonstrate its utility in various high-dimensional medical imaging applications. In the process, we make several fundamental enhancements to current methods. We categorise our contributions into three groups according to the types of uncertainties being modelled: (i) predictive; (ii) structural and (iii) human uncertainty. Firstly, we discuss the importance of quantifying predictive uncertainty and understanding its sources for developing a risk-averse and transparent medical image enhancement application. We demonstrate how a measure of predictive uncertainty can be used as a proxy for the predictive accuracy in the absence of ground-truths. Furthermore, assuming the structure of the model is flexible enough for the task, we introduce a way to decompose the predictive uncertainty into its orthogonal sources i.e. aleatoric and parameter uncertainty. We show the potential utility of such decoupling in providing a quantitative “explanations” into the model performance. Secondly, we introduce our recent attempts at learning model structures directly from data. One work proposes a method based on variational inference to learn a posterior distribution over connectivity structures within a neural network architecture for multi-task learning, and share some preliminary results in the MR-only radiotherapy planning application. Another work explores how the training algorithm of decision trees could be extended to grow the architecture of a neural network to adapt to the given availability of data and the complexity of the task. Lastly, we develop methods to model the “measurement noise” (e.g., biases and skill levels) of human annotators, and integrate this information into the learning process of the neural network classifier. In particular, we show that explicitly modelling the uncertainty involved in the annotation process not only leads to an improvement in robustness to label noise, but also yields useful insights into the patterns of errors that characterise individual experts

    Deep Learning for Multiclass Classification, Predictive Modeling and Segmentation of Disease Prone Regions in Alzheimer’s Disease

    Get PDF
    One of the challenges facing accurate diagnosis and prognosis of Alzheimer’s Disease (AD) is identifying the subtle changes that define the early onset of the disease. This dissertation investigates three of the main challenges confronted when such subtle changes are to be identified in the most meaningful way. These are (1) the missing data challenge, (2) longitudinal modeling of disease progression, and (3) the segmentation and volumetric calculation of disease-prone brain areas in medical images. The scarcity of sufficient data compounded by the missing data challenge in many longitudinal samples exacerbates the problem as we seek statistical meaningfulness in multiclass classification and regression analysis. Although there are many participants in the AD Neuroimaging Initiative (ADNI) study, many of the observations have a lot of missing features which often lead to the exclusion of potentially valuable data points that could add significant meaning in many ongoing experiments. Motivated by the necessity of examining all participants, even those with missing tests or imaging modalities, multiple techniques of handling missing data in this domain have been explored. Specific attention was drawn to the Gradient Boosting (GB) algorithm which has an inherent capability of addressing missing values. Prior to applying state-of-the-art classifiers such as Support Vector Machine (SVM) and Random Forest (RF), the impact of imputing data in common datasets with numerical techniques has been also investigated and compared with the GB algorithm. Furthermore, to discriminate AD subjects from healthy control individuals, and Mild Cognitive Impairment (MCI), longitudinal multimodal heterogeneous data was modeled using recurring neural networks (RNNs). In the segmentation and volumetric calculation challenge, this dissertation places its focus on one of the most relevant disease-prone areas in many neurological and neurodegenerative diseases, the hippocampus region. Changes in hippocampus shape and volume are considered significant biomarkers for AD diagnosis and prognosis. Thus, a two-stage model based on integrating the Vision Transformer and Convolutional Neural Network (CNN) is developed to automatically locate, segment, and estimate the hippocampus volume from the brain 3D MRI. The proposed architecture was trained and tested on a dataset containing 195 brain MRIs from the 2019 Medical Segmentation Decathlon Challenge against the manually segmented regions provided therein and was deployed on 326 MRI from our own data collected through Mount Sinai Medical Center as part of the 1Florida Alzheimer Disease Research Center (ADRC)

    Acta Cybernetica : Volume 18. Number 2.

    Get PDF
    • …
    corecore