1,188 research outputs found

    Write-limited sorts and joins for persistent memory

    Get PDF
    To mitigate the impact of the widening gap between the memory needs of CPUs and what standard memory technology can deliver, system architects have introduced a new class of memory technology termed persistent memory. Persistent memory is byteaddressable, but exhibits asymmetric I/O: writes are typically one order of magnitude more expensive than reads. Byte addressability combined with I/O asymmetry render the performance profile of persistent memory unique. Thus, it becomes imperative to find new ways to seamlessly incorporate it into database systems. We do so in the context of query processing. We focus on the fundamental operations of sort and join processing. We introduce the notion of write-limited algorithms that effectively minimize the I/O cost. We give a high-level API that enables the system to dynamically optimize the workflow of the algorithms; or, alternatively, allows the developer to tune the write profile of the algorithms. We present four different techniques to incorporate persistent memory into the database processing stack in light of this API. We have implemented and extensively evaluated all our proposals. Our results show that the algorithms deliver on their promise of I/O-minimality and tunable performance. We showcase the merits and deficiencies of each implementation technique, thus taking a solid first step towards incorporating persistent memory into query processing. 1

    Comparing global optimization and default settings of stream-based joins

    Get PDF
    One problem encountered in real-time data integration is the join of a continuous incoming data stream with a disk-based relation. In this paper we investigate a stream-based join algorithm, called mesh join (MESHJOIN), and focus on a critical component in the algorithm, called the disk-buffer. In MESHJOIN the size of disk-buffer varies with a change in total memory budget and tuning is required to get the maximum service rate within limited available memory. Until now there was little data on the position of the optimum value depending on the memory size, and no performance comparison has been carried out between the optimum and reasonable default sizes for the disk-buffer. To avoid tuning, we propose a reasonable default value for the disk-buffer size with a small and acceptable performance loss. The experimental results validate our arguments

    Speculative Approximations for Terascale Analytics

    Full text link
    Model calibration is a major challenge faced by the plethora of statistical analytics packages that are increasingly used in Big Data applications. Identifying the optimal model parameters is a time-consuming process that has to be executed from scratch for every dataset/model combination even by experienced data scientists. We argue that the incapacity to evaluate multiple parameter configurations simultaneously and the lack of support to quickly identify sub-optimal configurations are the principal causes. In this paper, we develop two database-inspired techniques for efficient model calibration. Speculative parameter testing applies advanced parallel multi-query processing methods to evaluate several configurations concurrently. The number of configurations is determined adaptively at runtime, while the configurations themselves are extracted from a distribution that is continuously learned following a Bayesian process. Online aggregation is applied to identify sub-optimal configurations early in the processing by incrementally sampling the training dataset and estimating the objective function corresponding to each configuration. We design concurrent online aggregation estimators and define halting conditions to accurately and timely stop the execution. We apply the proposed techniques to distributed gradient descent optimization -- batch and incremental -- for support vector machines and logistic regression models. We implement the resulting solutions in GLADE PF-OLA -- a state-of-the-art Big Data analytics system -- and evaluate their performance over terascale-size synthetic and real datasets. The results confirm that as many as 32 configurations can be evaluated concurrently almost as fast as one, while sub-optimal configurations are detected accurately in as little as a 1/20th1/20^{\text{th}} fraction of the time

    Peer to Peer Information Retrieval: An Overview

    Get PDF
    Peer-to-peer technology is widely used for file sharing. In the past decade a number of prototype peer-to-peer information retrieval systems have been developed. Unfortunately, none of these have seen widespread real- world adoption and thus, in contrast with file sharing, information retrieval is still dominated by centralised solutions. In this paper we provide an overview of the key challenges for peer-to-peer information retrieval and the work done so far. We want to stimulate and inspire further research to overcome these challenges. This will open the door to the development and large-scale deployment of real-world peer-to-peer information retrieval systems that rival existing centralised client-server solutions in terms of scalability, performance, user satisfaction and freedom

    10381 Summary and Abstracts Collection -- Robust Query Processing

    Get PDF
    Dagstuhl seminar 10381 on robust query processing (held 19.09.10 - 24.09.10) brought together a diverse set of researchers and practitioners with a broad range of expertise for the purpose of fostering discussion and collaboration regarding causes, opportunities, and solutions for achieving robust query processing. The seminar strove to build a unified view across the loosely-coupled system components responsible for the various stages of database query processing. Participants were chosen for their experience with database query processing and, where possible, their prior work in academic research or in product development towards robustness in database query processing. In order to pave the way to motivate, measure, and protect future advances in robust query processing, seminar 10381 focused on developing tests for measuring the robustness of query processing. In these proceedings, we first review the seminar topics, goals, and results, then present abstracts or notes of some of the seminar break-out sessions. We also include, as an appendix, the robust query processing reading list that was collected and distributed to participants before the seminar began, as well as summaries of a few of those papers that were contributed by some participants
    corecore