547 research outputs found

    Progress-preserving Refinements of CTA

    Get PDF
    We develop a theory of refinement for timed asynchronous systems, in the setting of Communicating Timed Automata (CTA). Our refinement applies point-wise to the components of a system of CTA, and only affecting their time constraints—in this way, we achieve compositionality and decidability. We then establish a decidable condition under which our refinement preserves behavioural properties of systems,such as their global and local progress. Our theory provides guidelines on how to implement timed protocols using the real-time primitives of programming languages. We validate our theory through a series of experiments, supported by an open-source tool which implements our verification techniques

    Planning and Sizing with OsiriX/Horos

    Get PDF
    It is known that endovascular aneurysm repair (EVAR) requires a precise deployment of the graft and so the anatomical and morphological characteristic study of the aorta and its branches is mandatory. The increase of endovascular surgeons’ interest on tomography image edition through software is marked specially when the increasing frequency of these procedures and its complexity have impelled surgeons to face additional and successive risk to occupational radiation exposure. Thus, a meticulous study of the angio-CT during EVAR preparation allows the reduction of unnecessary radiation exposure, as it also reduces consecutive image acquisition and contrast use (that may be related to renal overload in susceptible patients). Although some studies propose effective strategies to optimize the procedure, they rely on the use of additional specific and advanced equipment, available only in major centers. As an alternative, a simpler technique through image manipulation on the software OsiriX/Horos, aiming to reduce both exposures, is presented

    Doctor of Philosophy

    Get PDF
    dissertationAltered mechanics are believed to initiate osteoarthritis in hips with acetabular dysplasia. Periacetabular osteotomy (PAO) is the preferred surgical treatment; however, it is unknown if the procedure normalizes joint anatomy and mechanics. Changes in three-dimensional (3D) morphology and chondrolabral mechanics were quantified after PAO. Finite element (FE) models demonstrated that PAO improved the distribution of coverage, reduced stress, increased congruity, and prevented cartilage thinning. However, changes in mechanics were not consistent. In fact, one patient exhibited increased stress after surgery, which was believed to be a result of over-correction. Therefore, methods to integrate morphologic and biomechanical analysis with clinical care could standardize outcomes of PAO. FE simulations are time-intensive and require significant computing resources. Therefore, the second aim was to implement an efficient method to estimate mechanics. An enhanced discrete element analysis (DEA) model of the hip that accurately incorporated cartilage geometry and efficiently calculated stress was developed and analyzed. Although DEA model estimates predicted elevated magnitudes of contact stress, the distribution corresponded well with FE models. As a computationally efficient platform, DEA could assist in diagnosis and surgical planning. Imaging is a precursor to analyzing morphology and biomechanics. Ideally, an imaging protocol would visualize bone and soft-tissue at high resolution without ionizing radiation. Magnetic resonance imaging (MRI) with 3D dual-echo-steady-state (DESS) is a promising sequence to image the hip noninvasively, but its accuracy has not been quantified. Therefore, the final aim was to implement and validate the use of 3D DESS MRI in the hip. Using direct measurements of cartilage thickness as the standard, 3D DESS MRI imaged cartilage to ~0.5 mm of the physical measurements with 95% confidence, which is comparable to the most accurate hip imaging protocol presented to date. In summary, this dissertation provided unique insights into the morphologic and biomechanical features following PAO. In the future, DEA could be combined with 3D DESS MRI to efficiently analyze contact stress distributions. These methods could be incorporated into preoperative planning software, where the algorithm would predict the optimal relocation of the acetabulum to maximize femoral head coverage while minimizing contact stress, and thereby improve long-term outcomes of PAO

    Proposal for Numerical Benchmarking of Fluid-Structure Interaction in Cerebral Aneurysms

    Full text link
    Computational fluid dynamics is intensively used to deepen the understanding of aneurysm growth and rupture in the attempt to support physicians during therapy planning. Numerous studies have assumed fully-rigid vessel walls in their simulations, whose sole hemodynamics may fail to provide a satisfactory criterion for rupture risk assessment. Moreover, direct in-vivo observations of intracranial aneurysm pulsation have been recently reported, encouraging the development of fluid-structure interaction for their modelling and for new assessments. In this work, we describe a new fluid-structure interaction benchmark setting for the careful evaluation of different aneurysm shapes. The studied configurations consist of three real aneurysm domes positioned on a toroidal channel. All geometric features, meshing characteristics, flow quantities, comparisons with a rigid-wall model and corresponding plots are provided. Reported results emphasize the alteration of flow patterns and hemodynamic descriptors when moving from the rigid-wall model to the complete fluid-structure interaction framework, thereby underlining the importance of the coupling between hemodynamics and the surrounding vessel tissue.Comment: 23 pages, 14 figure

    Recalage préservant la topologie des vaisseaux: application à la cardiologie interventionnelle

    Get PDF
    In percutaneous coronary interventions, integrating into the live fluoroscopic image vessel calcifications and occlusion information that are revealed in the pre-operative Computed Tomography Angiography can greatly improve guidance of the clinician. Fusing pre- and intra-operative information into a single space aims at taking advantage of two complementary modalities and requires a step of registration that must provide good alignment and relevant correspondences between them. Most of the existing 3D/2D vessel registration algorithms do not take into account the particular topology of the vasculature to be matched, resulting into pairings that may be topologically inconsistent along the vasculature.A first contribution consisted in a registration framework dedicated to curve matching, denoted the Iterative Closest Curve (ICC). Its main feature is to preserve the topological consistency along curves by taking advantage of the Frechet distance that not only computes the distance between two curves but also builds ordered pairings along them. A second contribution is a pairing procedure designed for the matching of a vascular tree structure that endorses its particular topology and that can easily take advantage of the ICC-framework. Centerlines of the 3D tree are matched to curves extracted from the 2D vascular graph while preserving the connectivity at 3D bifurcations. The matching criterion used to build the pairings takes into account the geometric distance and the resemblance between curves both based on a global formulation using the Frechet distance.To evaluate our approach we run experiments on a database composed of 63 clinical cases, measuring accuracy on real conditions and robustness with respect to a simulated displacement. Quantitative results have been obtained using two complementary measures that aim at assessing the results both geometrically and topologically, and quantify the resulting alignment error as well as the pairing error. The proposed method exhibits good results both in terms of pairing and alignment and demonstrates to be low sensitive to the rotations to be compensated (up to 30 degrees).Cette thèse s’inscrit dans le cadre de la cardiologie interventionnelle. Intégrer des informations telles que la position des calcifications ainsi que la taille et forme d’une occlusion dans les images fluoroscopiques constituerait un bénéfice pour le praticien. Ces informations, invisibles dans les images rayons-X pendant la procédure, sont présentes au sein du scanner CT préopératoire. La fusion de cette modalité avec la fluoroscopie apporterait une aide précieuse au guidage temps réel des outils interventionnels en bénéficiant des informations fournies par le CT. Cette fusion requiert une étape de recalage qui vise à aligner au mieux les deux modalités et fournir des correspondances pertinentes entre elles. La plupart des algorithmes de recalage 3D/2D de vaisseaux rencontrent des difficultés à construire des appariements anatomiquement pertinents, essentiellement à cause du manque de cohérence topologique le long du réseau vasculaire.Afin de résoudre ce problème, nous proposons dans cette thèse un cadre générique pour le recalage de structures curvilinéaires. L’algorithme qui en découle préserve la structure des courbes appariées. Les artères coronaires pouvant être représentées par un ensemble de courbes arrangées en arbre, nous proposons aussi une procédure d’appariement qui respecte cette structure. Le recalage d’un arbre 3D sur un graphe 2D est ainsi réalisé en assurant la préservation des connectivités aux bifurcations. Le choix de l’appariement est basé sur un critère prenant en compte la distance géométrique ainsi que la ressemblance entre courbes. Ce critère est évalué grâce à une forme modifiée de la distance de Fréchet.Une base de données de 63 cas cliniques a été utilisée à travers différentes expériences afin de prouver la robustesse et la précision de notre approche. Nous avons proposé deux mesures complémentaires visant à quantifier la qualité de l’alignement d’une part et des appariements engendrés d’autre part. La méthode proposée se montre précise pour les alignements de la projection du modèle CT et des artères coronaires observées dans les images angiographiques. De plus, les appariements obtenus sont anatomiquement pertinents et lálgorithme a prouvé sa robustesse face aux perturbations de la position initiale. Nous attribuons cette robustesse à la qualité des appariements construits au fur et à mesure des itérations

    Finite element simulation of nonlinear bending models for thin elastic rods and plates

    Full text link
    Nonlinear bending phenomena of thin elastic structures arise in various modern and classical applications. Characterizing low energy states of elastic rods has been investigated by Bernoulli in 1738 and related models are used to determine configurations of DNA strands. The bending of a piece of paper has been described mathematically by Kirchhoff in 1850 and extensions of his model arise in nanotechnological applications such as the development of externally operated microtools. A rigorous mathematical framework that identifies these models as dimensionally reduced limits from three-dimensional hyperelasticity has only recently been established. It provides a solid basis for developing and analyzing numerical approximation schemes. The fourth order character of bending problems and a pointwise isometry constraint for large deformations require appropriate discretization techniques which are discussed in this article. Methods developed for the approximation of harmonic maps are adapted to discretize the isometry constraint and gradient flows are used to decrease the bending energy. For the case of elastic rods, torsion effects and a self-avoidance potential that guarantees injectivity of deformations are incorporated. The devised and rigorously analyzed numerical methods are illustrated by means of experiments related to the relaxation of elastic knots, the formation of singularities in a M\"obius strip, and the simulation of actuated bilayer plates.Comment: To appear in Handbook of Numerical Analysi

    Facilitating Extended Reality in Museums through a Web-Based Application

    Get PDF
    Masteroppgave i Programvareutvikling samarbeid med HVLPROG399MAMN-PRO

    On Urgency in Asynchronous Timed Session Types

    Get PDF
    We study an urgent semantics of asynchronous timed session types, where input actions happen as soon as possible. We show that with this semantics we can recover to the timed setting an appealing property of untimed session types: namely, deadlock-freedom is preserved when passing from synchronous to asynchronous communication

    Design of computer-controlled systems for on-line production testing: an integrated system approach

    Get PDF
    Since the introduction of the minicomputer about a decade ago, thousands have been installed as control elements in production systems for data acquisition, process control, and testing. The focus in this thesis is on the priciples involved in the design effort, rather than simply the description of some system to illustrate the end result
    • …
    corecore