3,825 research outputs found

    Quantum-inspired computational imaging

    Get PDF
    Computational imaging combines measurement and computational methods with the aim of forming images even when the measurement conditions are weak, few in number, or highly indirect. The recent surge in quantum-inspired imaging sensors, together with a new wave of algorithms allowing on-chip, scalable and robust data processing, has induced an increase of activity with notable results in the domain of low-light flux imaging and sensing. We provide an overview of the major challenges encountered in low-illumination (e.g., ultrafast) imaging and how these problems have recently been addressed for imaging applications in extreme conditions. These methods provide examples of the future imaging solutions to be developed, for which the best results are expected to arise from an efficient codesign of the sensors and data analysis tools.Y.A. acknowledges support from the UK Royal Academy of Engineering under the Research Fellowship Scheme (RF201617/16/31). S.McL. acknowledges financial support from the UK Engineering and Physical Sciences Research Council (grant EP/J015180/1). V.G. acknowledges support from the U.S. Defense Advanced Research Projects Agency (DARPA) InPho program through U.S. Army Research Office award W911NF-10-1-0404, the U.S. DARPA REVEAL program through contract HR0011-16-C-0030, and U.S. National Science Foundation through grants 1161413 and 1422034. A.H. acknowledges support from U.S. Army Research Office award W911NF-15-1-0479, U.S. Department of the Air Force grant FA8650-15-D-1845, and U.S. Department of Energy National Nuclear Security Administration grant DE-NA0002534. D.F. acknowledges financial support from the UK Engineering and Physical Sciences Research Council (grants EP/M006514/1 and EP/M01326X/1). (RF201617/16/31 - UK Royal Academy of Engineering; EP/J015180/1 - UK Engineering and Physical Sciences Research Council; EP/M006514/1 - UK Engineering and Physical Sciences Research Council; EP/M01326X/1 - UK Engineering and Physical Sciences Research Council; W911NF-10-1-0404 - U.S. Defense Advanced Research Projects Agency (DARPA) InPho program through U.S. Army Research Office; HR0011-16-C-0030 - U.S. DARPA REVEAL program; 1161413 - U.S. National Science Foundation; 1422034 - U.S. National Science Foundation; W911NF-15-1-0479 - U.S. Army Research Office; FA8650-15-D-1845 - U.S. Department of the Air Force; DE-NA0002534 - U.S. Department of Energy National Nuclear Security Administration)Accepted manuscrip

    Reconfigurable AUV for Intervention Missions: A Case Study on Underwater Object Recovery

    Get PDF
    Starting in January 2009, the RAUVI (Reconfigurable Autonomous Underwater Vehicle for Intervention Missions) project is a 3-year coordinated research action funded by the Spanish Ministry of Research and Innovation. In this paper, the state of progress after 2 years of continuous research is reported. As a first experimental validation of the complete system, a search and recovery problem is addressed, consisting of finding and recovering a flight data recorder placed at an unknown position at the bottom of a water tank. An overview of the techniques used to successfully solve the problem in an autonomous way is provided. The obtained results are very promising and are the first step toward the final test in shallow water at the end of 2011

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Volumetric models from 3D point clouds: The case study of sarcophagi cargo from a 2nd/3rd century AD Roman shipwreck near Sutivan on island Brac, Croatia

    Get PDF
    Multi-image photogrammetry can in favorable conditions even under water generate large clouds of 3D points which can be used for visualization of sunken heritage. For analysis of under-water archeological sites and comparison of artifacts, more compact shape models must be reconstructed from 3D points, where each object or a part of it is modeled individually. Volumetric models and superquadric models in particular are good candidates for such modeling since automated methods for their reconstruction and segmentation from 3D points exist. For the study case we use an underwater wreck site of a Roman ship from 2nd/3rd century AD located near Sutivan on island Brac in Croatia. We demonstrate how super- quadric models of sarcophagi and other stone blocks can be reconstructed from an unsegmented cloud of 3D points obtained by multi-image photogrammetry. We compare the dimensions of stone objects measured directly on the corresponding 3D point cloud with dimensions of the reconstructed super- quadric models and discuss other advantages of these volumetric models. The average difference be- tween point-to-point measurements of stone blocks and the dimensions of the corresponding superquadric model is on the order of few centimeters

    Recent Progress in the RAUVI Project: A Reconfigurable Autonomous Underwater Vehicle for Intervention

    Get PDF
    Starting in January 2009, the RAUVI project is a three years coordinated research action funded by the Spanish Ministry of Research and Innovation. This paper shows the research evolution during the first half of RAUVI’s live, bearing in mind that the long term objective is to design and develop an underwater autonomous robot able to perceive the environment and, by means of a specific hand-arm system, perform autonomously simple intervention tasks in shallow waters.This research was partly supported by the European Commission’s Seventh Framework Programme FP7/2007- 2013 under grant agreement 248497 (TRIDENT Project), by Spanish Ministry of Research and Innovation DPI2008-06548- C03 (RAUVI Project), and by Fundació Caixa Castelló- Bancaixa P1-1B2009-50

    A Novel Framework for Highlight Reflectance Transformation Imaging

    Get PDF
    We propose a novel pipeline and related software tools for processing the multi-light image collections (MLICs) acquired in different application contexts to obtain shape and appearance information of captured surfaces, as well as to derive compact relightable representations of them. Our pipeline extends the popular Highlight Reflectance Transformation Imaging (H-RTI) framework, which is widely used in the Cultural Heritage domain. We support, in particular, perspective camera modeling, per-pixel interpolated light direction estimation, as well as light normalization correcting vignetting and uneven non-directional illumination. Furthermore, we propose two novel easy-to-use software tools to simplify all processing steps. The tools, in addition to support easy processing and encoding of pixel data, implement a variety of visualizations, as well as multiple reflectance-model-fitting options. Experimental tests on synthetic and real-world MLICs demonstrate the usefulness of the novel algorithmic framework and the potential benefits of the proposed tools for end-user applications.Terms: "European Union (EU)" & "Horizon 2020" / Action: H2020-EU.3.6.3. - Reflective societies - cultural heritage and European identity / Acronym: Scan4Reco / Grant number: 665091DSURF project (PRIN 2015) funded by the Italian Ministry of University and ResearchSardinian Regional Authorities under projects VIGEC and Vis&VideoLa

    Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups

    Get PDF
    A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper

    Computational Imaging for Shape Understanding

    Get PDF
    Geometry is the essential property of real-world scenes. Understanding the shape of the object is critical to many computer vision applications. In this dissertation, we explore using computational imaging approaches to recover the geometry of real-world scenes. Computational imaging is an emerging technique that uses the co-designs of image hardware and computational software to expand the capacity of traditional cameras. To tackle face recognition in the uncontrolled environment, we study 2D color image and 3D shape to deal with body movement and self-occlusion. Especially, we use multiple RGB-D cameras to fuse the varying pose and register the front face in a unified coordinate system. The deep color feature and geodesic distance feature have been used to complete face recognition. To handle the underwater image application, we study the angular-spatial encoding and polarization state encoding of light rays using computational imaging devices. Specifically, we use the light field camera to tackle the challenging problem of underwater 3D reconstruction. We leverage the angular sampling of the light field for robust depth estimation. We also develop a fast ray marching algorithm to improve the efficiency of the algorithm. To deal with arbitrary reflectance, we investigate polarimetric imaging and develop polarimetric Helmholtz stereopsis that uses reciprocal polarimetric image pairs for high-fidelity 3D surface reconstruction. We formulate new reciprocity and diffuse/specular polarimetric constraints to recover surface depths and normals using an optimization framework. To recover the 3D shape in the unknown and uncontrolled natural illumination, we use two circularly polarized spotlights to boost the polarization cues corrupted by the environment lighting, as well as to provide photometric cues. To mitigate the effect of uncontrolled environment light in photometric constraints, we estimate a lighting proxy map and iteratively refine the normal and lighting estimation. Through expensive experiments on the simulated and real images, we demonstrate that our proposed computational imaging methods outperform traditional imaging approaches
    corecore