26 research outputs found

    Estimating the crop leaf area index using hyperspectral remote sensing

    Get PDF
    AbstractThe leaf area index (LAI) is an important vegetation parameter, which is used widely in many applications. Remote sensing techniques are known to be effective but inexpensive methods for estimating the LAI of crop canopies. During the last two decades, hyperspectral remote sensing has been employed increasingly for crop LAI estimation, which requires unique technical procedures compared with conventional multispectral data, such as denoising and dimension reduction. Thus, we provide a comprehensive and intensive overview of crop LAI estimation based on hyperspectral remote sensing techniques. First, we compare hyperspectral data and multispectral data by highlighting their potential and limitations in LAI estimation. Second, we categorize the approaches used for crop LAI estimation based on hyperspectral data into three types: approaches based on statistical models, physical models (i.e., canopy reflectance models), and hybrid inversions. We summarize and evaluate the theoretical basis and different methods employed by these approaches (e.g., the characteristic parameters of LAI, regression methods for constructing statistical predictive models, commonly applied physical models, and inversion strategies for physical models). Thus, numerous models and inversion strategies are organized in a clear conceptual framework. Moreover, we highlight the technical difficulties that may hinder crop LAI estimation, such as the “curse of dimensionality” and the ill-posed problem. Finally, we discuss the prospects for future research based on the previous studies described in this review

    Mapping vegetation density in a heterogeneous river floodplain ecosystem using pointable CHRIS/PROBA data

    Get PDF
    River floodplains in the Netherlands serve as water storage areas, while they also have the function of nature rehabilitation areas. Floodplain vegetation is therefore subject to natural processes of vegetation succession. At the same time, vegetation encroachment obstructs the water flow into the floodplains and increases the flood risk for the hinterland. Spaceborne pointable imaging spectroscopy has the potential to quantify vegetation density on the basis of leaf area index (LAI) from a desired view zenith angle. In this respect, hyperspectral pointable CHRIS data were linked to the ray tracing canopy reflectance model FLIGHT to retrieve vegetation density estimates over a heterogeneous river floodplain. FLIGHT enables simulating top-of-canopy reflectance of vegetated surfaces either in turbid (e.g., grasslands) or in 3D (e.g., forests) mode. By inverting FLIGHT against CHRIS data, LAI was computed for three main classified vegetation types, ‘herbaceous’, ‘shrubs’ and ‘forest’, and for the CHRIS view zenith angles in nadir, backward (-36°) and forward (+36°) scatter direction. The -36° direction showed most LAI variability within the vegetation types and was best validated, closely followed by the nadir direction. The +36° direction led to poorest LAI retrievals. The class-based inversion process has been implemented into a GUI toolbox which would enable the river manager to generate LAI maps in a semiautomatic way

    Quantitative estimation of vegetation traits and temporal dynamics using 3-D radiative transfer models, high-resolution hyperspectral images and satellite imagery

    Get PDF
    Large-scale monitoring of vegetation dynamics by remote sensing is key to detecting early signs of vegetation decline. Spectral-based indicators of phys-iological plant traits (PTs) have the potential to quantify variations in pho-tosynthetic pigments, chlorophyll fluorescence emission, and structural changes of vegetation as a function of stress. However, the specific response of PTs to disease-induced decline in heterogeneous canopies remains largely unknown, which is critical for the early detection of irreversible damage at different scales. Four specific objectives were defined in this research: i) to assess the feasibility of modelling the incidence and severity of Phytophthora cinnamomi and Xylella fastidiosa based on PTs and biophysical properties of vegetation; ii) to assess non-visual early indicators, iii) to retrieve PT using radiative transfer models (RTM), high-resolution imagery and satellite observations; and iv) to establish the basis for scaling up PTs at different spatial resolutions using RTM for their retrieval in different vegetation co-vers. This thesis integrates different approaches combining field data, air- and space-borne imagery, and physical and empirical models that allow the retrieval of indicators and the evaluation of each component’s contribution to understanding temporal variations of disease-induced symptoms in heter-ogeneous canopies. Furthermore, the effects associated with the understory are introduced, showing not only their impact but also providing a compre-hensive model to account for it. Consequently, a new methodology has been established to detect vegetation health processes and the influence of biotic and abiotic factors, considering different components of the canopy and their impact on the aggregated signal. It is expected that, using the presented methods, existing remote sensors and future developments, the ability to detect and assess vegetation health globally will have a substantial impact not only on socio-economic factors, but also on the preservation of our eco-system as a whole

    Remote sensing in shallow lake ecology

    Get PDF
    Shallow lakes are an important ecological and socio-economic resource. However, the impact of human pressures, both at the lake and catchment scale, has precipitated a decline in the ecological status of many shallow lakes, both in the UK, and throughout Europe. There is now, as direct consequence, unprecedented interest in the assessment and monitoring of ecological status and trajectory in shallow lakes, not least in response to the European Union Water Framework Directive (2000/60/EC). In this context, the spatially-resolving and panoramic data provided by remote sensing platforms may be of immense value in the construction of effective and efficient strategies for the assessment and monitoring of ecological status in shallow lakes and, moreover, in providing new, spatially-explicit, insights into the function of these ecosystems and how they respond to change. This thesis examined the use of remote sensing data for the assessment of (i) phytoplankton abundance and species composition and (ii) aquatic vegetation distribution and ecophysiological status in shallow lakes with a view to establishing the credence of such an approach and its value in limnological research and monitoring activities. High resolution in-situ and airborne remote sensing data was collected during a 2-year sampling campaign in the shallow lakes of the Norfolk Broads. It was demonstrated that semi-empirical algorithms could be formulated and used to provide accurate and robust estimations of the concentration of chlorophyll-a, even in these optically-complex waters. It was further shown that it was possible to differentiate and quantify the abundance of cyanobacteria using the biomarker pigment C-phycocyanin. The subsequent calibration of the imagery obtained from the airborne reconnaissance missions permitted the construction of diurnal and seasonal regional-scale time-series of phytoplankton dynamics in the Norfolk Broads. This approach was able to deliver unique spatial insights into the migratory behaviour of a potentially-toxic cyanobacterial bloom. It was further shown that remote sensing can be used to map the distribution of aquatic plants in shallow lakes, importantly including the extent of submerged vegetation, which is central to the assessment of ecological status. This research theme was subsequently extended in an exploration of the use of remote sensing for assessing the ecophysiological response of wetland plants to nutrient enrichment. It was shown that remote sensing metrics could be constructed for the quantification of plant vigour. The extrapolation of these techniques enabled spatial heterogeneity in the ecophysiological response of Phragmites australis to lake nutrient enrichment to be characterised and assisted the formulation of a mechanistic explanation for the variation in reedswamp performance in these shallow lakes. It is therefore argued that the spatially synoptic data provided by remote sensing has much to offer the assessment, monitoring and policing of ecological status in shallow lakes and, in particular, for facilitating the development of pan-European scale lake surveillance capabilities for the Water Framework Directive (2000/60/EC). It is also suggested that remote sensing can make a valuable contribution to furthering ecological understanding and, most significantly, in enabling ecosystem processes and functions to be examined at the lake-scale

    Remote Sensing of Plant Biodiversity

    Get PDF
    At last, here it is. For some time now, the world has needed a text providing both a new theoretical foundation and practical guidance on how to approach the challenge of biodiversity decline in the Anthropocene. This is a global challenge demanding global approaches to understand its scope and implications. Until recently, we have simply lacked the tools to do so. We are now entering an era in which we can realistically begin to understand and monitor the multidimensional phenomenon of biodiversity at a planetary scale. This era builds upon three centuries of scientific research on biodiversity at site to landscape levels, augmented over the past two decades by airborne research platforms carrying spectrometers, lidars, and radars for larger-scale observations. Emerging international networks of fine-grain in-situ biodiversity observations complemented by space-based sensors offering coarser-grain imagery—but global coverage—of ecosystem composition, function, and structure together provide the information necessary to monitor and track change in biodiversity globally. This book is a road map on how to observe and interpret terrestrial biodiversity across scales through plants—primary producers and the foundation of the trophic pyramid. It honors the fact that biodiversity exists across different dimensions, including both phylogenetic and functional. Then, it relates these aspects of biodiversity to another dimension, the spectral diversity captured by remote sensing instruments operating at scales from leaf to canopy to biome. The biodiversity community has needed a Rosetta Stone to translate between the language of satellite remote sensing and its resulting spectral diversity and the languages of those exploring the phylogenetic diversity and functional trait diversity of life on Earth. By assembling the vital translation, this volume has globalized our ability to track biodiversity state and change. Thus, a global problem meets a key component of the global solution. The editors have cleverly built the book in three parts. Part 1 addresses the theory behind the remote sensing of terrestrial plant biodiversity: why spectral diversity relates to plant functional traits and phylogenetic diversity. Starting with first principles, it connects plant biochemistry, physiology, and macroecology to remotely sensed spectra and explores the processes behind the patterns we observe. Examples from the field demonstrate the rising synthesis of multiple disciplines to create a new cross-spatial and spectral science of biodiversity. Part 2 discusses how to implement this evolving science. It focuses on the plethora of novel in-situ, airborne, and spaceborne Earth observation tools currently and soon to be available while also incorporating the ways of actually making biodiversity measurements with these tools. It includes instructions for organizing and conducting a field campaign. Throughout, there is a focus on the burgeoning field of imaging spectroscopy, which is revolutionizing our ability to characterize life remotely. Part 3 takes on an overarching issue for any effort to globalize biodiversity observations, the issue of scale. It addresses scale from two perspectives. The first is that of combining observations across varying spatial, temporal, and spectral resolutions for better understanding—that is, what scales and how. This is an area of ongoing research driven by a confluence of innovations in observation systems and rising computational capacity. The second is the organizational side of the scaling challenge. It explores existing frameworks for integrating multi-scale observations within global networks. The focus here is on what practical steps can be taken to organize multi-scale data and what is already happening in this regard. These frameworks include essential biodiversity variables and the Group on Earth Observations Biodiversity Observation Network (GEO BON). This book constitutes an end-to-end guide uniting the latest in research and techniques to cover the theory and practice of the remote sensing of plant biodiversity. In putting it together, the editors and their coauthors, all preeminent in their fields, have done a great service for those seeking to understand and conserve life on Earth—just when we need it most. For if the world is ever to construct a coordinated response to the planetwide crisis of biodiversity loss, it must first assemble adequate—and global—measures of what we are losing

    Pre-Aerosol, Clouds, and Ocean Ecosystem (PACE) Mission Science Definition Team Report

    Get PDF
    We live in an era in which increasing climate variability is having measurable impact on marine ecosystems within our own lifespans. At the same time, an ever-growing human population requires increased access to and use of marine resources. To understand and be better prepared to respond to these challenges, we must expand our capabilities to investigate and monitor ecological and bio geo chemical processes in the oceans. In response to this imperative, the National Aeronautics and Space Administration (NASA) conceived the Pre-Aerosol, Clouds, and ocean Ecosystem (PACE) mission to provide new information for understanding the living ocean and for improving forecasts of Earth System variability. The PACE mission will achieve these objectives by making global ocean color measurements that are essential for understanding the carbon cycle and its inter-relationship with climate change, and by expanding our understanding about ocean ecology and biogeochemistry. PACE measurements will also extend ocean climate data records collected since the 1990s to document changes in the function of aquatic ecosystems as they respond to human activities and natural processes over short and long periods of time. These measurements are pivotal for differentiating natural variability from anthropogenic climate change effects and for understanding the interactions between these processes and various human uses of the ocean. PACE ocean science goals and measurement capabilities greatly exceed those of our heritage ocean color sensors, and are needed to address the many outstanding science questions developed by the oceanographic community over the past 40 years

    Development of techniques to classify marine benthic habitats using hyperspectral imagery in oligotrophic, temperate waters

    Get PDF
    There is an increasing need for more detailed knowledge about the spatial distribution and structure of shallow water benthic habitats for marine conservation and planning. This, linked with improvements in hyperspectral image sensors provides an increased opportunity to develop new techniques to better utilise these data in marine mapping projects. The oligotrophic, optically-shallow waters surrounding Rottnest Island, Western Australia, provide a unique opportunity to develop and apply these new mapping techniques. The three flight lines of HyMap hyperspectral data flown for the Rottnest Island Reserve (RIR) in April 2004 were corrected for atmospheric effects, sunglint and the influence of the water column using the Modular Inversion and Processing System. A digital bathymetry model was created for the RIR using existing soundings data and used to create a range of topographic variables (e.g. slope) and other spatially relevant environmental variables (e.g. exposure to waves) that could be used to improve the ecological description of the benthic habitats identified in the hyperspectral imagery. A hierarchical habitat classification scheme was developed for Rottnest Island based on the dominant habitat components, such as Ecklonia radiata or Posidonia sinuosa. A library of 296 spectral signatures at HyMap spectral resolution (~15 nm) was created from >6000 in situ measurements of the dominant habitat components and subjected to spectral separation analysis at all levels of the habitat classification scheme. A separation analysis technique was developed using a multivariate statistical optimisation approach that utilised a genetic algorithm in concert with a range of spectral metrics to determine the optimum set of image bands to achieve maximum separation at each classification level using the entire spectral library. These results determined that many of the dominant habitat components could be separated spectrally as pure spectra, although there were almost always some overlapping samples from most classes at each split in the scheme. This led to the development of a classification algorithm that accounted for these overlaps. This algorithm was tested using mixture analysis, which attempted to identify 10 000 synthetically mixed signatures, with a known dominant component, on each run. The algorithm was applied directly to the water-corrected bottom reflectance data to classify the benthic habitats. At the broadest scale, bio-substrate regions were separated from bare substrates in the image with an overall accuracy of 95% and, at the finest scale, bare substrates, Posidonia, Amphibolis, Ecklonia radiata, Sargassum species, algal turf and coral were separated with an accuracy of 70%. The application of these habitat maps to a number of marine planning and management scenarios, such as marine conservation and the placement of boat moorings at dive sites was demonstrated. Committee Informatio
    corecore