1,322 research outputs found

    Math Search for the Masses: Multimodal Search Interfaces and Appearance-Based Retrieval

    Full text link
    We summarize math search engines and search interfaces produced by the Document and Pattern Recognition Lab in recent years, and in particular the min math search interface and the Tangent search engine. Source code for both systems are publicly available. "The Masses" refers to our emphasis on creating systems for mathematical non-experts, who may be looking to define unfamiliar notation, or browse documents based on the visual appearance of formulae rather than their mathematical semantics.Comment: Paper for Invited Talk at 2015 Conference on Intelligent Computer Mathematics (July, Washington DC

    A review and evaluation of the Langley Research Center's Scientific and Technical Information Program: Results of phase 6: The technical report. A survey and analysis

    Get PDF
    Current practice and usage using selected technical reports; literature relative to the sequential, language, and presentation components of technical reports; and NASA technical report publications standards are discussed. The effctiveness of the technical report as a product for information dissemination is considered

    Towards a matroid-minor structure theory

    Get PDF
    This paper surveys recent work that is aimed at generalising the results and techniques of the Graph Minors Project of Robertson and Seymour to matroids

    Understanding Optical Music Recognition

    Get PDF
    For over 50 years, researchers have been trying to teach computers to read music notation, referred to as Optical Music Recognition (OMR). However, this field is still difficult to access for new researchers, especially those without a significant musical background: Few introductory materials are available, and, furthermore, the field has struggled with defining itself and building a shared terminology. In this work, we address these shortcomings by (1) providing a robust definition of OMR and its relationship to related fields, (2) analyzing how OMR inverts the music encoding process to recover the musical notation and the musical semantics from documents, and (3) proposing a taxonomy of OMR, with most notably a novel taxonomy of applications. Additionally, we discuss how deep learning affects modern OMR research, as opposed to the traditional pipeline. Based on this work, the reader should be able to attain a basic understanding of OMR: its objectives, its inherent structure, its relationship to other fields, the state of the art, and the research opportunities it affords

    Mathematical Formula Recognition and Automatic Detection and Translation of Algorithmic Components into Stochastic Petri Nets in Scientific Documents

    Get PDF
    A great percentage of documents in scientific and engineering disciplines include mathematical formulas and/or algorithms. Exploring the mathematical formulas in the technical documents, we focused on the mathematical operations associations, their syntactical correctness, and the association of these components into attributed graphs and Stochastic Petri Nets (SPN). We also introduce a formal language to generate mathematical formulas and evaluate their syntactical correctness. The main contribution of this work focuses on the automatic segmentation of mathematical documents for the parsing and analysis of detected algorithmic components. To achieve this, we present a synergy of methods, such as string parsing according to mathematical rules, Formal Language Modeling, optical analysis of technical documents in forms of images, structural analysis of text in images, and graph and Stochastic Petri Net mapping. Finally, for the recognition of the algorithms, we enriched our rule based model with machine learning techniques to acquire better results

    Quantum Geometry as a Relational Construct

    Get PDF
    The problem of constructing a quantum theory of gravity is considered from a novel viewpoint. It is argued that any consistent theory of gravity should incorporate a relational character between the matter constituents of the theory. In particular, the traditional approach of quantizing a space-time metric is criticized and two possible avenues for constructing a satisfactory theory are put forward.Comment: 14 pages, revtex file. Submitted to MPL

    The WOZ Recognizer: A Tool For Understanding User Perceptions of Sketch-Based Interfaces

    Get PDF
    Sketch recognition has the potential to be an important input method for computers in the coming years; however, designing and building an accurate and sophisticated sketch recognition system is a time consuming and daunting task. Since sketch recognition is still at a level where mistakes are common, it is important to understand how users perceive and tolerate recognition errors and other user interface elements with these imperfect systems. A problem in performing this type of research is that we cannot easily control aspects of recognition in order to rigorously study the systems. We performed a study examining user perceptions of three pen-based systems for creating logic gate diagrams: a sketch-based interface, a WIMP-based interface, and a hybrid interface that combined elements of sketching and WIMP. We found that users preferred the sketch-based interface and we identified important criteria for pen-based application design. This work exposed the issue of studying recognition systems without fine-grained control over accuracy, recognition mode, and other recognizer properties. In order to solve this problem, we developed a Wizard of Oz sketch recognition tool, the WOZ Recognizer, that supports controlled symbol and position accuracy and batch and streaming recognition modes for a variety of sketching domains. We present the design of the WOZ Recognizer, modeling recognition domains using graphs, symbol alphabets, and grammars; and discuss the types of recognition errors we included in its design. Further, we discuss how the WOZ Recognizer simulates sketch recognition, controlling the WOZ Recognizer, and how users interact with it. In addition, we present an evaluative user study of the WOZ Recognizer and the lessons we learned. We have used the WOZ Recognizer to perform two user studies examining user perceptions of sketch recognition; both studies focused on mathematical sketching. In the first study, we examined whether users prefer recognition feedback now (real-time recognition) or later (batch recognition) in relation to different recognition accuracies and sketch complexities. We found that participants displayed a preference for real-time recognition in some situations (multiple expressions, low accuracy), but no statistical preference in others. In our second study, we examined whether users displayed a greater tolerance for recognition errors when they used mathematical sketching applications they found interesting or useful compared to applications they found less interesting. Participants felt they had a greater tolerance for the applications they preferred, although our statistical analysis did not positively support this. In addition to the research already performed, we propose several avenues for future research into user perceptions of sketch recognition that we believe will be of value to sketch recognizer researchers and application designers

    Fast Calculation of the Lomb-Scargle Periodogram Using Graphics Processing Units

    Full text link
    I introduce a new code for fast calculation of the Lomb-Scargle periodogram, that leverages the computing power of graphics processing units (GPUs). After establishing a background to the newly emergent field of GPU computing, I discuss the code design and narrate key parts of its source. Benchmarking calculations indicate no significant differences in accuracy compared to an equivalent CPU-based code. However, the differences in performance are pronounced; running on a low-end GPU, the code can match 8 CPU cores, and on a high-end GPU it is faster by a factor approaching thirty. Applications of the code include analysis of long photometric time series obtained by ongoing satellite missions and upcoming ground-based monitoring facilities; and Monte-Carlo simulation of periodogram statistical properties.Comment: Accepted by ApJ. Accompanying program source (updated since acceptance) can be downloaded from http://www.astro.wisc.edu/~townsend/resource/download/code/culsp.tar.g
    corecore