4,634 research outputs found

    Practical quantum realization of the ampere from the electron charge

    Full text link
    One major change of the future revision of the International System of Units (SI) is a new definition of the ampere based on the elementary charge \emph{e}. Replacing the former definition based on Amp\`ere's force law will allow one to fully benefit from quantum physics to realize the ampere. However, a quantum realization of the ampere from \emph{e}, accurate to within 10810^{-8} in relative value and fulfilling traceability needs, is still missing despite many efforts have been spent for the development of single-electron tunneling devices. Starting again with Ohm's law, applied here in a quantum circuit combining the quantum Hall resistance and Josephson voltage standards with a superconducting cryogenic amplifier, we report on a practical and universal programmable quantum current generator. We demonstrate that currents generated in the milliampere range are quantized in terms of efJef_\mathrm{J} (fJf_\mathrm{J} is the Josephson frequency) with a measurement uncertainty of 10810^{-8}. This new quantum current source, able to deliver such accurate currents down to the microampere range, can greatly improve the current measurement traceability, as demonstrated with the calibrations of digital ammeters. Beyond, it opens the way to further developments in metrology and in fundamental physics, such as a quantum multimeter or new accurate comparisons to single electron pumps.Comment: 15 pages, 4 figure

    Quantum Metrology Triangle Experiments: A Status Review

    Full text link
    Quantum Metrology Triangle experiments combine three quantum electrical effects (the Josephson effect, the quantum Hall effect and the single-electron transport effect) used in metrology. These experiments allow important fundamental consistency tests on the validity of commonly assumed relations between fundamental constants of nature and the quantum electrical effects. This paper reviews the history, results and the present status and perspectives of Quantum Metrology Triangle experiments. It also reflects on the possible implications of results for the knowledge on fundamental constants and the quantum electrical effects.Comment: 36 pages, 8 figure

    X-ray imaging of spin currents and magnetisation dynamics at the nanoscale

    Full text link
    Understanding how spins move in time and space is the aim of both fundamental and applied research in modern magnetism. Over the past three decades, research in this field has led to technological advances that have had a major impact on our society, while improving the understanding of the fundamentals of spin physics. However, important questions still remain unanswered, because it is experimentally challenging to directly observe spins and their motion with a combined high spatial and temporal resolution. In this article, we present an overview of the recent advances in X-ray microscopy that allow researchers to directly watch spins move in time and space at the microscopically relevant scales. We discuss scanning X-ray transmission microscopy (STXM) at resonant soft X-ray edges, which is available at most modern synchrotron light sources. This technique measures magnetic contrast through the X-ray magnetic circular dichroism (XMCD) effect at the resonant absorption edges, while focusing the X-ray radiation at the nanometre scale, and using the intrinsic pulsed structure of synchrotron-generated X-rays to create time-resolved images of magnetism at the nanoscale. In particular, we discuss how the presence of spin currents can be detected by imaging spin accumulation, and how the magnetisation dynamics in thin ferromagnetic films can be directly imaged. We discuss how a direct look at the phenomena allows for a deeper understanding of the the physics at play, that is not accessible to other, more indirect techniques. Finally, we present an overview of the exciting opportunities that lie ahead to further understand the fundamentals of novel spin physics, opportunities offered by the appearance of diffraction limited storage rings and free electron lasers.Comment: 21 pages, 10 figure

    Single-electron current sources: towards a refined definition of ampere

    Get PDF
    Controlling electrons at the level of elementary charge ee has been demonstrated experimentally already in the 1980's. Ever since, producing an electrical current efef, or its integer multiple, at a drive frequency ff has been in a focus of research for metrological purposes. In this review we first discuss the generic physical phenomena and technical constraints that influence charge transport. We then present the broad variety of proposed realizations. Some of them have already proven experimentally to nearly fulfill the demanding needs, in terms of transfer errors and transfer rate, of quantum metrology of electrical quantities, whereas some others are currently "just" wild ideas, still often potentially competitive if technical constraints can be lifted. We also discuss the important issues of read-out of single-electron events and potential error correction schemes based on them. Finally, we give an account of the status of single-electron current sources in the bigger framework of electric quantum standards and of the future international SI system of units, and briefly discuss the applications and uses of single-electron devices outside the metrological context.Comment: 55 pages, 38 figures; (v2) fixed typos and misformatted references, reworded the section on AC pump

    Evidence for universality of tunable-barrier electron pumps

    Get PDF
    We review recent precision measurements on semiconductor tunable-barrier electron pumps operating in a ratchet mode. Seven studies on five different designs of pumps have reported measurements of the pump current with relative total uncertainties around 10-6 or less. Combined with theoretical models of electron capture by the pumps, these experimental data exhibits encouraging evidence that the pumps operate according to a universal mechanism, independent of the details of device design. Evidence for robustness of the pump current against changes in the control parameters is at a more preliminary stage, but also encouraging, with two studies reporting robustness of the pump current against three or more parameters in the range of ∼5 × 10-7 to ∼2 × 10-6. This review highlights the need for an agreed protocol for tuning the electron pump for optimal operation, as well as more rigorous evaluations of the robustness in a wide range of pump designs

    An accurate high-speed single-electron quantum dot pump

    Get PDF
    Using standard microfabrication techniques, it is now possible to construct devices that appear to reliably manipulate electrons one at a time. These devices have potential use as building blocks in quantum computing devices, or as a standard of electrical current derived only from a frequency and the fundamental charge. To date, the error rate in semiconductor 'tuneable-barrier' pump devices, those which show most promise for high-frequency operation, have not been tested in detail. We present high-accuracy measurements of the current from an etched GaAs quantum dot pump, operated at zero source-drain bias voltage with a single ac-modulated gate at 340 MHz driving the pump cycle. By comparison with a reference current derived from primary standards, we show that the electron transfer accuracy is better than 15 parts per million. High-resolution studies of the dependence of the pump current on the quantum dot tuning parameters also reveal possible deviations from a model used to describe the pumping cycle

    High Power Chirally-Couple-Core (CCC) Fiber Lasers for Coherent Combining Systems.

    Full text link
    Large core fibers with diffraction limited beam output are required by the rapidly developing high-power fiber lasers technology, with numerous current and future applications ranging from industrial to fundamental scientific. While PCF-based large-core solutions reached core sizes of more than 100μm, albeit at the cost of sacrificing their compatibility with compact integration, so-called chirally-coupled core (CCC) fibers demonstrate robust single-mode output with cores sizes reaching around 60μm in structures completely compatible with standard fiber fusion splicing and coiled packaging techniques, well suited for monolithically-integrated compact and robust high power fiber laser systems. In this dissertation we present a detailed study of using this novel CCC fiber technology for high pulse energy and high average power systems, in particular for use in different types of coherently-combined fiber laser arrays, where compatibility of CCC fiber technology with monolithic integration becomes an enabling factor for constructing complex but practical high-power laser “circuitry”. We first present a detailed theoretical description of power handling and thermal characteristics in high power fiber amplifiers, and analyze impact of modal leakage from an effectively single-mode fiber core on the fiber amplifier and laser efficiency. Furthermore, unique polarization preservation characteristics of CCC fibers are explored, which provide the theoretical foundation for design guidelines to achieve stable polarization preservation in high power CCC fiber systems. In subsequent chapters we present experimental exploration of high average power scaling of CCC fiber amplifiers, reporting up to 576W of single frequency output from 37μm core CCC fiber amplifier, as well as laboratory study of large-core CCC fiber amplifier modal output performance at high average powers. Furthermore, we report demonstration of up to 9.1mJ at ~1MW peak power extraction from a 55μm core Yb-doped double-clad CCC fiber amplifier, the highest ever reported pulse energy from any effectively single-mode large-core fiber. Then we theoretically explore novel pulsed pumping approach, which could lead to an order of magnitude increase in extracted pulsed energies compared to what is currently possible with cw pumping. Contributions of this work will be particularly important for the development of high intensity kHz-repetition rate ultrashort-pulse laser systems for driving laser plasma accelerators.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/110354/1/chzhu_1.pd

    Photodissociation Dynamics of the Iodine-Arene Charge-Transfer Complex

    Get PDF
    The photodissociation reaction of the molecular iodine:arene charge-transfer (CT) complex into an iodine atom and an iodine atom-arene fragment has been investigated using femtosecond pump-probe, resonance Raman, and molecular dynamics simulations. In the condensed phase the reaction proceeds on a time scale of less than 25 fs, in sharp contrast to the gas phase where the excited state lifetime of the complex is about 1 ps. Since little CT resonance enhancement is found in Raman studies on the I2-stretch vibration, it is concluded that rapid curve crossing occurs from the CT state to a dissociative surface. Of particular interest is the finding that the polarization anisotropy of the iodine atom:arene (I:ar) photoproduct decays on a time scale of 350 fs both in pure arene solvents as well as in mixed arene/cyclohexane solutions. This latter finding rules out that secondary I:ar complex formation is the main cause of this ultrafast depolarization effect. The initial polarization anisotropy is found to be ~0.12 in pure mesitylene and ~0.34 in mixed mesitylene/cyclohexane solutions. Semiempirical configuration-interaction calculations show that, except for the axial CT complex, the transition dipole is aligned almost parallel to the normal of the arene plane. The oscillator strength of the CT transition is found to be maximal in the oblique conformation with the I2 molecule positioned at an angle of about 30° with respect to the arene normal. This iodine angular dependence of the oscillator strength leads to photoselection of bent I2:ar complexes in pump-probe experiments. Molecular dynamics simulations confirm earlier findings that the I2:benzene complex is a fragile entity and that it persists only for a few hundred femtoseconds. These simulations also provide the proper time scale for the decay of the polarization anisotropy. The fact that the photoproduct experiences a substantial torque in the dissociation process explains the absence of a cage effect in this reaction.
    corecore