12 research outputs found

    Related-Tweakey Impossible Differential Attack on Reduced-Round SKINNY-AEAD M1/M3

    Get PDF
    SKINNY-AEAD is one of the second-round candidates of the Lightweight Cryptography Standardization project held by NIST. SKINNY-AEAD M1 is the primary member of six SKINNY-AEAD schemes, while SKINNY-AEAD M3 is another member with a small tag. In the design document, only security analyses of their underlying primitive SKINNY-128-384 are provided. Besides, there are no valid third-party analyses on SKINNY-AEAD M1/M3 according to our knowledge. Therefore, this paper focuses on constructing the first third-party security analyses on them under a nonce-respecting scenario. By taking the encryption mode of SKINNY-AEAD into consideration and exploiting several properties of SKINNY, we can deduce some necessary constraints on the input and tweakey differences of related-tweakey impossible differential distinguishers. Under these constraints, we can find distinguishers suitable for mounting powerful tweakey recovery attacks. With the help of the automatic searching algorithms based on STP, we find some 14-round distinguishers. Based on one of these distinguishers, we mount a 20-round and an 18-round tweakey recovery attack on SKINNY-AEAD M1/M3. To the best of our knowledge, all these attacks are the best ones so far

    Cryptanalysis of Some Block Cipher Constructions

    Get PDF
    When the public-key cryptography was introduced in the 1970s, symmetric-key cryptography was believed to soon become outdated. Nevertheless, we still heavily rely on symmetric-key primitives as they give high-speed performance. They are used to secure mobile communication, e-commerce transactions, communication through virtual private networks and sending electronic tax returns, among many other everyday activities. However, the security of symmetric-key primitives does not depend on a well-known hard mathematical problem such as the factoring problem, which is the basis of the RSA public-key cryptosystem. Instead, the security of symmetric-key primitives is evaluated against known cryptanalytic techniques. Accordingly, the topic of furthering the state-of-the-art of cryptanalysis of symmetric-key primitives is an ever-evolving topic. Therefore, this thesis is dedicated to the cryptanalysis of symmetric-key cryptographic primitives. Our focus is on block ciphers as well as hash functions that are built using block ciphers. Our contributions can be summarized as follows: First, we tackle the limitation of the current Mixed Integer Linear Programming (MILP) approaches to represent the differential propagation through large S-boxes. Indeed, we present a novel approach that can efficiently model the Difference Distribution Table (DDT) of large S-boxes, i.e., 8-bit S-boxes. As a proof of the validity and efficiency of our approach, we apply it on two out of the seven AES-round based constructions that were recently proposed in FSE 2016. Using our approach, we improve the lower bound on the number of active S-boxes of one construction and the upper bound on the best differential characteristic of the other. Then, we propose meet-in-the-middle attacks using the idea of efficient differential enumeration against two Japanese block ciphers, i.e., Hierocrypt-L1 and Hierocrypt-3. Both block ciphers were submitted to the New European Schemes for Signatures, Integrity, and Encryption (NESSIE) project, selected as one of the Japanese e-Government recommended ciphers in 2003 and reselected in the candidate recommended ciphers list in 2013. We construct five S-box layer distinguishers that we use to recover the master keys of reduced 8 S-box layer versions of both block ciphers. In addition, we present another meet-in-the-middle attack on Hierocrypt-3 with slightly higher time and memory complexities but with much less data complexity. Afterwards, we shift focus to another equally important cryptanalytic attack, i.e., impossible differential attack. SPARX-64/128 is selected among the SPARX family that was recently proposed to provide ARX based block cipher whose security against differential and linear cryptanalysis can be proven. We assess the security of SPARX-64/128 against impossible differential attack and show that it can reach the same number of rounds the division-based integral attack, proposed by the designers, can reach. Then, we pick Kiasu-BC as an example of a tweakable block cipher and prove that, on contrary to its designers’ claim, the freedom in choosing the publicly known tweak decreases its security margin. Lastly, we study the impossible differential properties of the underlying block cipher of the Russian hash standard Streebog and point out the potential risk in using it as a MAC scheme in the secret-IV mode

    Randomness Generation for Secure Hardware Masking - Unrolled Trivium to the Rescue

    Get PDF
    Masking is a prominent strategy to protect cryptographic implementations against side-channel analysis. Its popularity arises from the exponential security gains that can be achieved for (approximately) quadratic resource utilization. Many variants of the countermeasure tailored for different optimization goals have been proposed over the past decades. The common denominator among all of them is the implicit demand for robust and high entropy randomness. Simply assuming that uniformly distributed random bits are available, without taking the cost of their generation into account, leads to a poor understanding of the efficiency and performance of secure implementations. This is especially relevant in case of hardware masking schemes which are known to consume large amounts of random bits per cycle due to parallelism. Currently, there seems to be no consensus on how to most efficiently derive many pseudo-random bits per clock cycle from an initial seed and with properties suitable for masked hardware implementations. In this work, we evaluate a number of building blocks for this purpose and find that hardware-oriented stream ciphers like Trivium and its reduced-security variant Bivium B outperform all competitors when implemented in an unrolled fashion. Unrolled implementations of these primitives enable the flexible generation of many bits per cycle while maintaining high performance, which is crucial for satisfying the large randomness demands of state-of-the-art masking schemes. According to our analysis, only Linear Feedback Shift Registers (LFSRs), when also unrolled, are capable of producing long non-repetitive sequences of random-looking bits at a high rate per cycle even more efficiently than Trivium and Bivium B. Yet, these instances do not provide black-box security as they generate only linear outputs. We experimentally demonstrate that using multiple output bits from an LFSR in the same masked implementation can violate probing security and even lead to harmful randomness cancellations. Circumventing these problems, and enabling an independent analysis of randomness generation and masking scheme, requires the use of cryptographically stronger primitives like stream ciphers. As a result of our studies, we provide an evidence-based estimate for the cost of securely generating n fresh random bits per cycle. Depending on the desired level of black-box security and operating frequency, this cost can be as low as 20n to 30n ASIC gate equivalents (GE) or 3n to 4n FPGA look-up tables (LUTs), where n is the number of random bits required. Our results demonstrate that the cost per bit is (sometimes significantly) lower than estimated in previous works, incentivizing parallelism whenever exploitable and potentially moving low randomness usage in hardware masking research from a primary to secondary design goal

    HEPCloud: An FPGA-based Multicore Processor for FV Somewhat Homomorphic Function Evaluation

    Get PDF
    In this paper, we present an FPGA based hardware accelerator 'HEPCloud' for homomorphic evaluations of medium depth functions which has applications in cloud computing. Our HEPCloud architecture supports the polynomial ring based homomorphic encryption scheme FV for a ring-LWE parameter set of dimension 2(15), modulus size 1,228-bit, and a standard deviation 50. This parameter-set offers a multiplicative depth 36 and at least 85 bit security. The processor of HEPCloud is composed of multiple parallel cores. To achieve fast computation time for such a large parameter-set, various optimizations in both algorithm and architecture levels are performed. For fast polynomial multiplications, we use CRT with NTT and achieve two dimensional parallelism in HEPCloud. We optimize the BRAM access, use a fast Barrett like polynomial reduction method, optimize the cost of CRT, and design a fast divide-and-round unit. Beside parallel processing, we apply pipelining strategy in several of the sequential building blocks to reduce the impact of sequential computations. Finally, we implement HEPCloud on a medium-size Xilinx Virtex 6 FPGA board ML605 board and measure its on-board performance. To store the ciphertexts during a homomorphic function evaluation, we use the large DDR3 memory of the ML605 board. Our FPGA-based implementation of HEPCloud computes a homomorphic multiplication in 26.67 s, of which the actual computation takes only 3.36 s and the rest is spent for off-chip memory access. It requires about 37,551 s to evaluate the SIMON-64/128 block cipher, but the per-block timing is only about 18 s because HEPCloud processes 2,048 blocks simultaneously. The results show that FPGA-based acceleration of homomorphic function evaluations is feasible, but fast memory interface is crucial for the performance.Peer reviewe

    Cryptanalysis of Block Ciphers with New Design Strategies

    Get PDF
    Block ciphers are among the mostly widely used symmetric-key cryptographic primitives, which are fundamental building blocks in cryptographic/security systems. Most of the public-key primitives are based on hard mathematical problems such as the integer factorization in the RSA algorithm and discrete logarithm problem in the DiffieHellman. Therefore, their security are mathematically proven. In contrast, symmetric-key primitives are usually not constructed based on well-defined hard mathematical problems. Hence, in order to get some assurance in their claimed security properties, they must be studied against different types of cryptanalytic techniques. Our research is dedicated to the cryptanalysis of block ciphers. In particular, throughout this thesis, we investigate the security of some block ciphers constructed with new design strategies. These new strategies include (i) employing simple round function, and modest key schedule, (ii) using another input called tweak rather than the usual two inputs of the block ciphers, the plaintext and the key, to instantiate different permutations for the same key. This type of block ciphers is called a tweakable block cipher, (iii) employing linear and non-linear components that are energy efficient to provide low energy consumption block ciphers, (iv) employing optimal diffusion linear transformation layer while following the AES-based construction to provide faster diffusion rate, and (v) using rather weak but larger S-boxes in addition to simple linear transformation layers to provide provable security of ARX-based block ciphers against single characteristic differential and linear cryptanalysis. The results presented in this thesis can be summarized as follows: Initially, we analyze the security of two lightweight block ciphers, namely, Khudra and Piccolo against Meet-in-the-Middle (MitM) attack based on the Demirci and Selcuk approach exploiting the simple design of the key schedule and round function. Next, we investigate the security of two tweakable block ciphers, namely, Kiasu-BC and SKINNY. According to the designers, the best attack on Kiasu-BC covers 7 rounds. However, we exploited the tweak to present 8-round attack using MitM with efficient enumeration cryptanalysis. Then, we improve the previous results of the impossible differential cryptanalysis on SKINNY exploiting the tweakey schedule and linear transformation layer. Afterwards, we study the security of new low energy consumption block cipher, namely, Midori128 where we present the longest impossible differential distinguishers that cover complete 7 rounds. Then, we utilized 4 of these distinguishers to launch key recovery attack against 11 rounds of Midori128 to improve the previous results on this cipher using the impossible differential cryptanalysis. Then, using the truncated differential cryptanalysis, we are able to attack 13 rounds of Midori128 utilizing a 10-round differential distinguisher. We also analyze Kuznyechik, the standard Russian federation block cipher, against MitM with efficient enumeration cryptanalysis where we improve the previous results on Kuznyechik, using MitM attack with efficient enumeration, by presenting 6-round attack. Unlike the previous attack, our attack exploits the exact values of the coefficients of the MDS transformation that is used in the cipher. Finally, we present key recovery attacks using the multidimensional zero-correlation cryptanalysis against SPARX-128, which follows the long trail design strategy, to provide provable security of ARX-based block ciphers against single characteristic differential and linear cryptanalysis

    Automated Search Oriented to Key Recovery on Ciphers with Linear Key Schedule

    Get PDF
    Automatic modelling to search distinguishers with high probability covering as many rounds as possible, such as MILP, SAT/SMT, CP models, has become a very popular cryptanalysis topic today. In those models, the optimizing objective is usually the probability or the number of rounds of the distinguishers. If we want to recover the secret key for a round-reduced block cipher, there are usually two phases, i.e., finding an efficient distinguisher and performing key-recovery attack by extending several rounds before and after the distinguisher. The total number of attacked rounds is not only related to the chosen distinguisher, but also to the extended rounds before and after the distinguisher. In this paper, we try to combine the two phases in a uniform automatic model. Concretely, we apply this idea to automate the related-key rectangle attacks on SKINNY and ForkSkinny. We propose some new distinguishers with advantage to perform key-recovery attacks. Our key-recovery attacks on a few versions of round-reduced SKINNY and ForkSkinny cover 1 to 2 more rounds than the best previous attacks

    A New Sieving-Style Information-Set Decoding Algorithm

    Get PDF
    The problem of decoding random codes is a fundamental problem for code-based cryptography, including recent code-based candidates in the NIST post-quantum standardization process. In this paper, we present a novel sieving-style information-set decoding (ISD) algorithm, addressing the task of solving the syndrome decoding problem. Our approach involves maintaining a list of weight-2p2p solution vectors to a partial syndrome decoding problem and then creating new vectors by identifying pairs of vectors that collide in pp positions. By gradually increasing the parity-check condition by one and repeating this process iteratively, we find the final solution(s). We show that our novel algorithm performs better than other ISDs in the memory-restricted scenario when applied to McEliece. Notably, in the case of problems with very low relative weight, it seems to significantly outperform all previous algorithms. In particular, for code-based candidates BIKE and HQC, the algorithm has lower bit complexity than the previous best results

    Security of Ubiquitous Computing Systems

    Get PDF
    The chapters in this open access book arise out of the EU Cost Action project Cryptacus, the objective of which was to improve and adapt existent cryptanalysis methodologies and tools to the ubiquitous computing framework. The cryptanalysis implemented lies along four axes: cryptographic models, cryptanalysis of building blocks, hardware and software security engineering, and security assessment of real-world systems. The authors are top-class researchers in security and cryptography, and the contributions are of value to researchers and practitioners in these domains. This book is open access under a CC BY license

    Security of Ubiquitous Computing Systems

    Get PDF
    The chapters in this open access book arise out of the EU Cost Action project Cryptacus, the objective of which was to improve and adapt existent cryptanalysis methodologies and tools to the ubiquitous computing framework. The cryptanalysis implemented lies along four axes: cryptographic models, cryptanalysis of building blocks, hardware and software security engineering, and security assessment of real-world systems. The authors are top-class researchers in security and cryptography, and the contributions are of value to researchers and practitioners in these domains. This book is open access under a CC BY license
    corecore