7,664 research outputs found

    An Analytical Approach to Programs as Data Objects

    Get PDF
    This essay accompanies a selection of 32 articles (referred to in bold face in the text and marginally marked in the bibliographic references) submitted to Aarhus University towards a Doctor Scientiarum degree in Computer Science.The author's previous academic degree, beyond a doctoral degree in June 1986, is an "Habilitation à diriger les recherches" from the Université Pierre et Marie Curie (Paris VI) in France; the corresponding material was submitted in September 1992 and the degree was obtained in January 1993.The present 32 articles have all been written since 1993 and while at DAIMI.Except for one other PhD student, all co-authors are or have been the author's students here in Aarhus

    Refunctionalization at Work

    Get PDF
    We present the left inverse of Reynolds's defunctionalization and we show its relevance to programming and to programming languages. We propose two methods to transform a program that is almost in defunctionalized form into one that is actually in defunctionalized form, and we illustrate them with a recognizer for Dyck words and with Dijkstra's shunting-yard algorithm

    Editorial

    Get PDF

    Building the knowledge base for environmental action and sustainability

    Get PDF

    Refunctionalization at Work

    Get PDF
    We present the left inverse of Reynolds's defunctionalization and we show its relevance to programming and to programming languages. We present two methods to put a program that is almost in defunctionalized form into one that is actually in defunctionalized form, and we illustrate them with a recognizer for Dyck words and with Dijkstra's shunting-yard algorithm

    A Rational Deconstruction of Landin's SECD Machine with the J Operator

    Full text link
    Landin's SECD machine was the first abstract machine for applicative expressions, i.e., functional programs. Landin's J operator was the first control operator for functional languages, and was specified by an extension of the SECD machine. We present a family of evaluation functions corresponding to this extension of the SECD machine, using a series of elementary transformations (transformation into continu-ation-passing style (CPS) and defunctionalization, chiefly) and their left inverses (transformation into direct style and refunctionalization). To this end, we modernize the SECD machine into a bisimilar one that operates in lockstep with the original one but that (1) does not use a data stack and (2) uses the caller-save rather than the callee-save convention for environments. We also identify that the dump component of the SECD machine is managed in a callee-save way. The caller-save counterpart of the modernized SECD machine precisely corresponds to Thielecke's double-barrelled continuations and to Felleisen's encoding of J in terms of call/cc. We then variously characterize the J operator in terms of CPS and in terms of delimited-control operators in the CPS hierarchy. As a byproduct, we also present several reduction semantics for applicative expressions with the J operator, based on Curien's original calculus of explicit substitutions. These reduction semantics mechanically correspond to the modernized versions of the SECD machine and to the best of our knowledge, they provide the first syntactic theories of applicative expressions with the J operator

    Editorial

    Get PDF

    Boltzmann samplers for random generation of lambda terms

    Get PDF
    Randomly generating structured objects is important in testing and optimizing functional programs, whereas generating random l'l-terms is more specifically needed for testing and optimizing compilers. For that a tool called QuickCheck has been proposed, but in this tool the control of the random generation is left to the programmer. Ten years ago, a method called Boltzmann samplers has been proposed to generate combinatorial structures. In this paper, we show how Boltzmann samplers can be developed to generate lambda-terms, but also other data structures like trees. These samplers rely on a critical value which parameters the main random selector and which is exhibited here with explanations on how it is computed. Haskell programs are proposed to show how samplers are actually implemented
    corecore