158 research outputs found

    Programming the Adapteva Epiphany 64-core Network-on-chip Coprocessor

    Full text link
    In the construction of exascale computing systems energy efficiency and power consumption are two of the major challenges. Low-power high performance embedded systems are of increasing interest as building blocks for large scale high- performance systems. However, extracting maximum performance out of such systems presents many challenges. Various aspects from the hardware architecture to the programming models used need to be explored. The Epiphany architecture integrates low-power RISC cores on a 2D mesh network and promises up to 70 GFLOPS/Watt of processing efficiency. However, with just 32 KB of memory per eCore for storing both data and code, and only low level inter-core communication support, programming the Epiphany system presents several challenges. In this paper we evaluate the performance of the Epiphany system for a variety of basic compute and communication operations. Guided by this data we explore strategies for implementing scientific applications on memory constrained low-powered devices such as the Epiphany. With future systems expected to house thousands of cores in a single chip, the merits of such architectures as a path to exascale is compared to other competing systems.Comment: 14 pages, submitted to IJHPCA Journal special editio

    HARDWARE DESIGN OF MESSAGE PASSING ARCHITECTURE ON HETEROGENEOUS SYSTEM

    Get PDF
    Heterogeneous multi/many-core chips are commonly used in today’s top tier supercomputers. Similar heterogeneous processing elements — or, computation ac- celerators — are commonly found in FPGA systems. Within both multi/many-core chips and FPGA systems, the on-chip network plays a critical role by connecting these processing elements together. However, The common use of the on-chip network is for point-to-point communication between on-chip components and the memory in- terface. As the system scales up with more nodes, traditional programming methods, such as MPI, cannot effectively use the on-chip network and the off-chip network, therefore could make communication the performance bottleneck. This research proposes a MPI-like Message Passing Engine (MPE) as part of the on-chip network, providing point-to-point and collective communication primitives in hardware. On one hand, the MPE improves the communication performance by offloading the communication workload from the general processing elements. On the other hand, the MPE provides direct interface to the heterogeneous processing ele- ments which can eliminate the data path going around the OS and libraries. Detailed experimental results have shown that the MPE can significantly reduce the com- munication time and improve the overall performance, especially for heterogeneous computing systems because of the tight coupling with the network. Additionally, a hybrid “MPI+X” computing system is tested and it shows MPE can effectively of- fload the communications and let the processing elements play their strengths on the computation

    A review of High Performance Computing foundations for scientists

    Full text link
    The increase of existing computational capabilities has made simulation emerge as a third discipline of Science, lying midway between experimental and purely theoretical branches [1, 2]. Simulation enables the evaluation of quantities which otherwise would not be accessible, helps to improve experiments and provides new insights on systems which are analysed [3-6]. Knowing the fundamentals of computation can be very useful for scientists, for it can help them to improve the performance of their theoretical models and simulations. This review includes some technical essentials that can be useful to this end, and it is devised as a complement for researchers whose education is focused on scientific issues and not on technological respects. In this document we attempt to discuss the fundamentals of High Performance Computing (HPC) [7] in a way which is easy to understand without much previous background. We sketch the way standard computers and supercomputers work, as well as discuss distributed computing and discuss essential aspects to take into account when running scientific calculations in computers.Comment: 33 page

    On the acceleration of wavefront applications using distributed many-core architectures

    Get PDF
    In this paper we investigate the use of distributed graphics processing unit (GPU)-based architectures to accelerate pipelined wavefront applications—a ubiquitous class of parallel algorithms used for the solution of a number of scientific and engineering applications. Specifically, we employ a recently developed port of the LU solver (from the NAS Parallel Benchmark suite) to investigate the performance of these algorithms on high-performance computing solutions from NVIDIA (Tesla C1060 and C2050) as well as on traditional clusters (AMD/InfiniBand and IBM BlueGene/P). Benchmark results are presented for problem classes A to C and a recently developed performance model is used to provide projections for problem classes D and E, the latter of which represents a billion-cell problem. Our results demonstrate that while the theoretical performance of GPU solutions will far exceed those of many traditional technologies, the sustained application performance is currently comparable for scientific wavefront applications. Finally, a breakdown of the GPU solution is conducted, exposing PCIe overheads and decomposition constraints. A new k-blocking strategy is proposed to improve the future performance of this class of algorithm on GPU-based architectures

    Optimizing Xeon Phi for Interactive Data Analysis

    Full text link
    The Intel Xeon Phi manycore processor is designed to provide high performance matrix computations of the type often performed in data analysis. Common data analysis environments include Matlab, GNU Octave, Julia, Python, and R. Achieving optimal performance of matrix operations within data analysis environments requires tuning the Xeon Phi OpenMP settings, process pinning, and memory modes. This paper describes matrix multiplication performance results for Matlab and GNU Octave over a variety of combinations of process counts and OpenMP threads and Xeon Phi memory modes. These results indicate that using KMP_AFFINITY=granlarity=fine, taskset pinning, and all2all cache memory mode allows both Matlab and GNU Octave to achieve 66% of the practical peak performance for process counts ranging from 1 to 64 and OpenMP threads ranging from 1 to 64. These settings have resulted in generally improved performance across a range of applications and has enabled our Xeon Phi system to deliver significant results in a number of real-world applications.Comment: 6 pages, 5 figures, accepted in IEEE High Performance Extreme Computing (HPEC) conference 201
    • 

    corecore