21 research outputs found

    In-memory computing with emerging memory devices: Status and outlook

    Get PDF
    Supporting data for "In-memory computing with emerging memory devices: status and outlook", submitted to APL Machine Learning

    Energy Efficient and Error Resilient Neuromorphic Computing in VLSI

    Get PDF
    Realization of the conventional Von Neumann architecture faces increasing challenges due to growing process variations, device reliability and power consumption. As an appealing architectural solution, brain-inspired neuromorphic computing has drawn a great deal of research interest due to its potential improved scalability and power efficiency, and better suitability in processing complex tasks. Moreover, inherit error resilience in neuromorphic computing allows remarkable power and energy savings by exploiting approximate computing. This dissertation focuses on a scalable and energy efficient neurocomputing architecture which leverages emerging memristor nanodevices and a novel approximate arithmetic for cognitive computing. First, brain-inspired digital neuromorphic processor (DNP) architecture with memristive synaptic crossbar is presented for large scale spiking neural networks. We leverage memristor nanodevices to build an N Ă—N crossbar array to store not only multibit synaptic weight values but also the network configuration data with significantly reduced area cost. Additionally, the crossbar array is accessible both column- and row-wise to significantly expedite the synaptic weight update process for on-chip learning. The proposed digital pulse width modulator (PWM) readily creates a binary pulse with various durations to read and write the multilevel memristors with low cost. Our design integrates N digital leaky integrate-and-fire (LIF) silicon neurons to mimic their biological counterparts and the respective on-chip learning circuits for implementing spike timing dependent plasticity (STDP) learning rules. The proposed column based analog-to-digital conversion (ADC) scheme accumulates the pre-synaptic weights of a neuron efficiently and reduces silicon area by using only one shared arithmetic unit for processing LIF operations of all N neurons. With 256 silicon neurons, the learning circuits and 64K synapses, the power dissipation and area of our design are evaluated as 6.45 mW and 1.86 mm2, respectively, in a 90 nm CMOS technology. Furthermore, arithmetic computations contribute significantly to the overall processing time and power of the proposed architecture. In particular, addition and comparison operations represent 88.5% and 42.9% of processing time and power for digital LIF computation, respectively. Hence, by exploiting the built-in resilience of the presented neuromorphic architecture, we propose novel approximate adder and comparator designs to significantly reduce energy consumption with a very low er- ror rate. The significantly improved error rate and critical path delay stem from a novel carry prediction technique that leverages the information from less significant input bits in a parallel manner. An error magnitude reduction scheme is proposed to further reduce amount of error once detected with low cost in the proposed adder design. Implemented in a commercial 90 nm CMOS process, it is shown that the proposed adder is up to 2.4Ă— faster and 43% more energy efficient over traditional adders while having an error rate of only 0.18%. Additionally, the proposed com- parator achieves an error rate of less than 0.1% and an energy reduction of up to 4.9Ă— compared to the conventional ones. The proposed arithmetic has been adopted in a VLSI-based neuromorphic character recognition chip using unsupervised learning. The approximation errors of the proposed arithmetic units have been shown to have negligible impacts on the training process. Moreover, the energy saving of up to 66.5% over traditional arithmetic units is achieved for the neuromorphic chip with scaled supply levels

    Hardware Implementation of Deep Network Accelerators Towards Healthcare and Biomedical Applications

    Get PDF
    With the advent of dedicated Deep Learning (DL) accelerators and neuromorphic processors, new opportunities are emerging for applying deep and Spiking Neural Network (SNN) algorithms to healthcare and biomedical applications at the edge. This can facilitate the advancement of the medical Internet of Things (IoT) systems and Point of Care (PoC) devices. In this paper, we provide a tutorial describing how various technologies ranging from emerging memristive devices, to established Field Programmable Gate Arrays (FPGAs), and mature Complementary Metal Oxide Semiconductor (CMOS) technology can be used to develop efficient DL accelerators to solve a wide variety of diagnostic, pattern recognition, and signal processing problems in healthcare. Furthermore, we explore how spiking neuromorphic processors can complement their DL counterparts for processing biomedical signals. After providing the required background, we unify the sparsely distributed research on neural network and neuromorphic hardware implementations as applied to the healthcare domain. In addition, we benchmark various hardware platforms by performing a biomedical electromyography (EMG) signal processing task and drawing comparisons among them in terms of inference delay and energy. Finally, we provide our analysis of the field and share a perspective on the advantages, disadvantages, challenges, and opportunities that different accelerators and neuromorphic processors introduce to healthcare and biomedical domains. This paper can serve a large audience, ranging from nanoelectronics researchers, to biomedical and healthcare practitioners in grasping the fundamental interplay between hardware, algorithms, and clinical adoption of these tools, as we shed light on the future of deep networks and spiking neuromorphic processing systems as proponents for driving biomedical circuits and systems forward.Comment: Submitted to IEEE Transactions on Biomedical Circuits and Systems (21 pages, 10 figures, 5 tables

    Architectures and Design of VLSI Machine Learning Systems

    Get PDF
    Quintillions of bytes of data are generated every day in this era of big data. Machine learning techniques are utilized to perform predictive analysis on these data, to reveal hidden relationships and dependencies and perform predictions of outcomes and behaviors. The obtained predictive models are used to interpret the existing data and predict new data information. Nowadays, most machine learning algorithms are realized by software programs running on general-purpose processors, which usually takes a huge amount of CPU time and introduces unbelievably high energy consumption. In comparison, a dedicated hardware design is usually much more efficient than software programs running on general-purpose processors in terms of runtime and energy consumption. Therefore, the objective of this dissertation is to develop efficient hardware architectures for mainstream machine learning algorithms, to provide a promising solution to addressing the runtime and energy bottlenecks of machine learning applications. However, it is a really challenging task to map complex machine learning algorithms to efficient hardware architectures. In fact, many important design decisions need to be made during the hardware development for efficient tradeoffs. In this dissertation, a parallel digital VLSI architecture for combined SVM training and classification is proposed. For the first time, cascade SVM, a powerful training algorithm, is leveraged to significantly improve the scalability of hardware-based SVM training and develop an efficient parallel VLSI architecture. The parallel SVM processors provide a significant training time speedup and energy reduction compared with the software SVM algorithm running on a general-purpose CPU. Furthermore, a liquid state machine based neuromorphic learning processor with integrated training and recognition is proposed. A novel theoretical measure of computational power is proposed to facilitate fast design space exploration of the recurrent reservoir. Three low-power techniques are proposed to improve the energy efficiency. Meanwhile, a 2-layer spiking neural network with global inhibition is realized on Silicon. In addition, we also present architectural design exploration of a brain-inspired digital neuromorphic processor architecture with memristive synaptic crossbar array, and highlight several synaptic memory access styles. Various analog-to-digital converter schemes have been investigated to provide new insights into the tradeoff between the hardware cost and energy consumption

    Area-efficient Neuromorphic Silicon Circuits and Architectures using Spatial and Spatio-Temporal Approaches

    Get PDF
    In the field of neuromorphic VLSI connectivity is a huge bottleneck in implementing brain-inspired circuits due to the large number of synapses needed for performing brain-like functions. (E.g. pattern recognition, classification, etc.). In this thesis I have addressed this problem using a two pronged approach namely spatial and temporal.Spatial: The real-estate occupied by silicon synapses have been an impediment to implementing neuromorphic circuits. In recent years, memristors have emerged as a nano-scale analog synapse. Furthermore, these nano-devices can be integrated on top of CMOS chips enabling the realization of dense neural networks. As a first step in realizing this vision, a programmable CMOS chip enabling direct integration of memristors was realized. In a collaborative MURI project, a CMOS memory platform was designed for the memristive memory array in a hybrid/3D architecture (CMOL architecture) and memristors were successfully integrated on top of it. After demonstrating feasibility of post-CMOS integration of memristors, a second design containing an array of spiking CMOS neurons was designed in a 5mm x 5mm chip in a 180nm CMOS process to explore the role of memristors as synapses in neuromorphic chips.8Temporal: While physical miniaturization by integrating memristors is one facet of realizing area-efficient neural networks, on-chip routing between silicon neurons prevents the complete realization of complex networks containing large number of neurons. A promising solution for the connectivity problem is to employ spatio-temporal coding to encode neuronal information in the time of arrival of the spikes. Temporal codes open up a whole new range of coding schemes which not only are energy efficient (computation with one spike) but also have much larger information capacity than their conventional counterparts. This can result in reducing the number of connections to do similar tasks with traditional rate-based methods.By choosing an efficient temporal coding scheme we developed a system architecture by which pattern classification can be done using a “Winners-share-all” instead of a “Winner-takes-all” mechanism. Winner-takes-all limits the code space to the number of output neurons, meaning n output neurons can only classify n pattern. In winners-share-all we exploit the code space provided by the temporal code by training different combination of k out of n neurons to fire together in response to different patterns. Optimal values of k in order to maximize information capacity using n output neurons were theoretically determined and utilized. An unsupervised network of 3 layers was trained to classify 14 patterns of 15 x 15 pixels while using only 6 output neurons to demonstrate the power of the technique. The reduction in the number of output neurons results in the reduction of number of training parameters and results in lower power, area and memory required for the same functionality

    2022 roadmap on neuromorphic computing and engineering

    Full text link
    Modern computation based on von Neumann architecture is now a mature cutting-edge science. In the von Neumann architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer is responsible for a large part of the power consumption. The next generation computer technology is expected to solve problems at the exascale with 1018^{18} calculations each second. Even though these future computers will be incredibly powerful, if they are based on von Neumann type architectures, they will consume between 20 and 30 megawatts of power and will not have intrinsic physically built-in capabilities to learn or deal with complex data as our brain does. These needs can be addressed by neuromorphic computing systems which are inspired by the biological concepts of the human brain. This new generation of computers has the potential to be used for the storage and processing of large amounts of digital information with much lower power consumption than conventional processors. Among their potential future applications, an important niche is moving the control from data centers to edge devices. The aim of this roadmap is to present a snapshot of the present state of neuromorphic technology and provide an opinion on the challenges and opportunities that the future holds in the major areas of neuromorphic technology, namely materials, devices, neuromorphic circuits, neuromorphic algorithms, applications, and ethics. The roadmap is a collection of perspectives where leading researchers in the neuromorphic community provide their own view about the current state and the future challenges for each research area. We hope that this roadmap will be a useful resource by providing a concise yet comprehensive introduction to readers outside this field, for those who are just entering the field, as well as providing future perspectives for those who are well established in the neuromorphic computing community

    Efficient Neuromorphic Computing Enabled by Spin-Transfer Torque: Devices, Circuits and Systems

    Get PDF
    Present day computers expend orders of magnitude more computational resources to perform various cognitive and perception related tasks that humans routinely perform everyday. This has recently resulted in a seismic shift in the field of computation where research efforts are being directed to develop a neurocomputer that attempts to mimic the human brain by nanoelectronic components and thereby harness its efficiency in recognition problems. Bridging the gap between neuroscience and nanoelectronics, this thesis demonstrates the encoding of biological neural and synaptic functionalities in the underlying physics of electron spin. Description of various spin-transfer torque mechanisms that can be potentially utilized for realizing neuro-mimetic device structures is provided. A cross-layer perspective extending from the device to the circuit and system level is presented to envision the design of an All-Spin neuromorphic processor enabled with on-chip learning functionalities. Device-circuit-algorithm co-simulation framework calibrated to experimental results suggest that such All-Spin neuromorphic systems can potentially achieve almost two orders of magnitude energy improvement in comparison to state-of-the-art CMOS implementations

    Simulation and implementation of novel deep learning hardware architectures for resource constrained devices

    Get PDF
    Corey Lammie designed mixed signal memristive-complementary metal–oxide–semiconductor (CMOS) and field programmable gate arrays (FPGA) hardware architectures, which were used to reduce the power and resource requirements of Deep Learning (DL) systems; both during inference and training. Disruptive design methodologies, such as those explored in this thesis, can be used to facilitate the design of next-generation DL systems
    corecore