584 research outputs found

    Hesitant Fuzzy Linguistic Analytic Hierarchical Process With Prioritization, Consistency Checking, and Inconsistency Repairing

    Get PDF
    Analytic hierarchy process (AHP), as one of the most important methods to tackle multiple criteria decision-making problems, has achieved much success over the past several decades. Given that linguistic expressions are much closer than numerical values or single linguistic terms to a human way of thinking and cognition, this paper investigates the AHP with comparative linguistic expressions. After providing the snapshot of classical AHP and its fuzzy extensions, we propose the framework of hesitant fuzzy linguistic AHP, which shows how to yield a decision for qualitative decision-making problems with complex linguistic expressions. First, the comparative linguistic expressions over criteria or alternatives are transformed into hesitant fuzzy linguistic elements and then the hesitant fuzzy linguistic preference relations (HFLPRs) are constructed. Considering that HFLPRs may be inconsistent, we conduct consistency checking and improving processes after obtaining priorities from the HFLPRs based on a linear programming method. Regarding the consistency-improving process, we develop a new way to establish a perfectly consistent HFLPR. The procedure of the hesitant fuzzy linguistic AHP is given in stepwise. Finally, a numerical example concerning the used-car management in a lemon market is given to illustrate the ef ciency of the proposed hesitant fuzzy linguistic AHP method.This work was supported in part by the National Natural Science Foundation of China under Grant 71771156, in part by the 2019 Sichuan Planning Project of Social Science under Grant SC18A007, in part by the 2019 Soft Science Project of Sichuan Science and Technology Department under Grant 2019JDR0141, and in part by the Project of Innovation at Sichuan University under Grant 2018hhs-43

    An overview on managing additive consistency of reciprocal preference relations for consistency-driven decision making and Fusion: Taxonomy and future directions

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The reciprocal preference relation (RPR) is a powerful tool to represent decision makers’ preferences in decision making problems. In recent years, various types of RPRs have been reported and investigated, some of them being the ‘classical’ RPRs, interval-valued RPRs and hesitant RPRs. Additive consistency is one of the most commonly used property to measure the consistency of RPRs, with many methods developed to manage additive consistency of RPRs. To provide a clear perspective on additive consistency issues of RPRs, this paper reviews the consistency measurements of the different types of RPRs. Then, consistency-driven decision making and information fusion methods are also reviewed and classified into four main types: consistency improving methods; consistency-based methods to manage incomplete RPRs; consistency control in consensus decision making methods; and consistency-driven linguistic decision making methods. Finally, with respect to insights gained from prior researches, further directions for the research are proposed

    Interval-valued 2-tuple hesitant fuzzy linguistic term set and its application in multiple attribute decision making

    Full text link
    [EN] The hesitant fuzzy linguistic term sets can retain the completeness of linguistic information elicitation by assigning a set of possible linguistic terms to a qualitative variable. However, sometimes experts cannot make sure that the objects attain these possible linguistic terms but only provide the degrees of confidence to express their hesitant cognition. Given that the interval numbers can denote the possible membership degrees that an object belongs to a set, it is suitable and convenient to provide an interval-valued index to measure the degree of a linguistic variable to a given hesitant fuzzy linguistic term set. Inspired by this idea, we introduce the concept of interval-valued 2-tuple hesitant fuzzy linguistic term set (IV2THFLTS) based on the interval number and the hesitant fuzzy linguistic term set. Then, we define some interval-valued 2-tuple hesitant fuzzy linguistic aggregation operators. Afterwards, to overcome the instability of subjective weights, we propose a method to compute the weights of attributes. For the convenience of application, a method is given to solve the multiple attribute decision making problems with IV2THFLTSs. Finally, a case study is carried out to validate the proposed method, and some comparisons with other methods are given to show the advantages of the proposed method.The work was supported in part by the National Natural Science Foundation of China (Nos. 71501135, 71771156), the China Postdoctoral Science Foundation (2016T90863, 2016M602698), the Fundamental Research Funds for the central Universities (No. YJ201535), and the Scientific Research Foundation for Excellent Young Scholars at Sichuan University (No. 2016SCU04A23).Si, G.; Liao, H.; Yu, D.; Llopis Albert, C. (2018). Interval-valued 2-tuple hesitant fuzzy linguistic term set and its application in multiple attribute decision making. Journal of Intelligent & Fuzzy Systems. 34(6):4225-4236. https://doi.org/10.3233/JIFS-171967S4225423634

    Fuzzy Techniques for Decision Making 2018

    Get PDF
    Zadeh's fuzzy set theory incorporates the impreciseness of data and evaluations, by imputting the degrees by which each object belongs to a set. Its success fostered theories that codify the subjectivity, uncertainty, imprecision, or roughness of the evaluations. Their rationale is to produce new flexible methodologies in order to model a variety of concrete decision problems more realistically. This Special Issue garners contributions addressing novel tools, techniques and methodologies for decision making (inclusive of both individual and group, single- or multi-criteria decision making) in the context of these theories. It contains 38 research articles that contribute to a variety of setups that combine fuzziness, hesitancy, roughness, covering sets, and linguistic approaches. Their ranges vary from fundamental or technical to applied approaches

    Full Issue

    Get PDF

    Risk assessment in project management by a graphtheory- based group decision making method with comprehensive linguistic preference information

    Get PDF
    Risk assessment is a vital part in project management. It is possible that experts may provide comprehensive linguistic preference information in distinct forms with respect to different aspects of the risk assessment problem in investment management. It is a challenge to model and deal with comprehensive linguistic preference assessments in multiple forms given by experts. In this regard, this paper defines the generalised probabilistic linguistic preference relation (GPLPR) to represent different forms of linguistic preference information in a unified structure. Then, a probability cutting method is proposed to simplify the representation of a GPLPR. Afterwards, a graph-theory-based method is developed to improve the consistency degree of a GPLPR. A group decision making method with GPLPRs is then proposed to carry on the risk assessment in project management. Discussions regarding the comparative analysis and managerial insights are given

    Risk assessment in project management by a graph-theory-based group decision making method with comprehensive linguistic preference information

    Get PDF
    The work was supported by the National Natural Science Foundation of China (71971145, 71771156, 72171158), the Andalusian Government under Project P20-00673, and also by the Spanish State Research Agency under Project PID2019-103880RB-I00/AEI/10.13039/501100011033.Risk assessment is a vital part in project management. It is possible that experts may provide comprehensive linguistic preference information in distinct forms with respect to different aspects of the risk assessment problem in investment management. It is a challenge to model and deal with comprehensive linguistic preference assessments in multiple forms given by experts. In this regard, this paper defines the generalised probabilistic linguistic preference relation (GPLPR) to represent different forms of linguistic preference information in a unified structure. Then, a probability cutting method is proposed to simplify the representation of a GPLPR. Afterwards, a graph-theory-based method is developed to improve the consistency degree of a GPLPR. A group decision making method with GPLPRs is then proposed to carry on the risk assessment in project management. Discussions regarding the comparative analysis and managerial insights are given.National Natural Science Foundation of China (NSFC) 71971145 71771156 72171158Andalusian Government P20-00673Spanish Government PID2019-103880RB-I00/AEI/10.13039/50110001103

    Full Issue

    Get PDF

    Uncertain Multi-Criteria Optimization Problems

    Get PDF
    Most real-world search and optimization problems naturally involve multiple criteria as objectives. Generally, symmetry, asymmetry, and anti-symmetry are basic characteristics of binary relationships used when modeling optimization problems. Moreover, the notion of symmetry has appeared in many articles about uncertainty theories that are employed in multi-criteria problems. Different solutions may produce trade-offs (conflicting scenarios) among different objectives. A better solution with respect to one objective may compromise other objectives. There are various factors that need to be considered to address the problems in multidisciplinary research, which is critical for the overall sustainability of human development and activity. In this regard, in recent decades, decision-making theory has been the subject of intense research activities due to its wide applications in different areas. The decision-making theory approach has become an important means to provide real-time solutions to uncertainty problems. Theories such as probability theory, fuzzy set theory, type-2 fuzzy set theory, rough set, and uncertainty theory, available in the existing literature, deal with such uncertainties. Nevertheless, the uncertain multi-criteria characteristics in such problems have not yet been explored in depth, and there is much left to be achieved in this direction. Hence, different mathematical models of real-life multi-criteria optimization problems can be developed in various uncertain frameworks with special emphasis on optimization problems

    Fuzzy linear programming problems : models and solutions

    No full text
    We investigate various types of fuzzy linear programming problems based on models and solution methods. First, we review fuzzy linear programming problems with fuzzy decision variables and fuzzy linear programming problems with fuzzy parameters (fuzzy numbers in the definition of the objective function or constraints) along with the associated duality results. Then, we review the fully fuzzy linear programming problems with all variables and parameters being allowed to be fuzzy. Most methods used for solving such problems are based on ranking functions, alpha-cuts, using duality results or penalty functions. In these methods, authors deal with crisp formulations of the fuzzy problems. Recently, some heuristic algorithms have also been proposed. In these methods, some authors solve the fuzzy problem directly, while others solve the crisp problems approximately
    • …
    corecore