110,800 research outputs found

    Memory consistency models using constraints

    Get PDF
    Memory consistency models (MCMs) are at the heart of concurrent programming. They represent the behaviour of concurrent programs at the chip level. To test these models small program snippets called litmus test are generated, which show allowed or forbidden behaviour of different MCMs. This paper is showcasing the use of constraint programming to automate the generation and testing of litmus tests for memory consistency models. We produce a few exemplary case studies for two MCMs, namely Sequential Consistency and Total Store Order. These studies demonstrate the flexibility of constrains programming in this context and lay foundation to the direct verification of MCMs against the software facing cache coherence protocols.Postprin

    Implicit transactional memory in chip multiprocessors

    Get PDF
    Chip Multiprocessors (CMPs) are an efficient way of designing and use the huge amount of transistors on a chip. Different cores on a chip can compose a shared memory system with a very low-latency interconnect at a very low cost. Unfortunately, consistency models and synchronization styles of popular programming models for multiprocessors impose severe performance losses. Known architectural approaches to combat these losses are too complex, too specialized, or not transparent to the software. In this article, we introduce “implicit transactional memory” as a generalized architectural concept to remove such performance losses. We show how the concept of implicit transactions can be implemented at a low complexity by leveraging the multi-checkpoint mechanism of the Kilo-Instruction Processor. By relying on a general speculation substrate, it supports even the strictest consistency model – sequential consistency – potentially as effectively as weaker models and it allows multiple threads to speculatively execute critical sections, beyond barriers and event synchronizations.Postprint (published version

    dOpenCL: Towards a Uniform Programming Approach for Distributed Heterogeneous Multi-/Many-Core Systems

    Get PDF
    Modern computer systems are becoming increasingly heterogeneous by comprising multi-core CPUs, GPUs, and other accelerators. Current programming approaches for such systems usually require the application developer to use a combination of several programming models (e. g., MPI with OpenCL or CUDA) in order to exploit the full compute capability of a system. In this paper, we present dOpenCL (Distributed OpenCL) – a uniform approach to programming distributed heterogeneous systems with accelerators. dOpenCL extends the OpenCL standard, such that arbitrary computing devices installed on any node of a distributed system can be used together within a single application. dOpenCL allows moving data and program code to these devices in a transparent, portable manner. Since dOpenCL is designed as a fully-fledged implementation of the OpenCL API, it allows running existing OpenCL applications in a heterogeneous distributed environment without any modifications. We describe in detail the mechanisms that are required to implement OpenCL for distributed systems, including a device management mechanism for running multiple applications concurrently. Using three application studies, we compare the performance of dOpenCL with MPI+OpenCL and a standard OpenCL implementation

    TriCheck: Memory Model Verification at the Trisection of Software, Hardware, and ISA

    Full text link
    Memory consistency models (MCMs) which govern inter-module interactions in a shared memory system, are a significant, yet often under-appreciated, aspect of system design. MCMs are defined at the various layers of the hardware-software stack, requiring thoroughly verified specifications, compilers, and implementations at the interfaces between layers. Current verification techniques evaluate segments of the system stack in isolation, such as proving compiler mappings from a high-level language (HLL) to an ISA or proving validity of a microarchitectural implementation of an ISA. This paper makes a case for full-stack MCM verification and provides a toolflow, TriCheck, capable of verifying that the HLL, compiler, ISA, and implementation collectively uphold MCM requirements. The work showcases TriCheck's ability to evaluate a proposed ISA MCM in order to ensure that each layer and each mapping is correct and complete. Specifically, we apply TriCheck to the open source RISC-V ISA, seeking to verify accurate, efficient, and legal compilations from C11. We uncover under-specifications and potential inefficiencies in the current RISC-V ISA documentation and identify possible solutions for each. As an example, we find that a RISC-V-compliant microarchitecture allows 144 outcomes forbidden by C11 to be observed out of 1,701 litmus tests examined. Overall, this paper demonstrates the necessity of full-stack verification for detecting MCM-related bugs in the hardware-software stack.Comment: Proceedings of the Twenty-Second International Conference on Architectural Support for Programming Languages and Operating System

    Evaluating Cache Coherent Shared Virtual Memory for Heterogeneous Multicore Chips

    Full text link
    The trend in industry is towards heterogeneous multicore processors (HMCs), including chips with CPUs and massively-threaded throughput-oriented processors (MTTOPs) such as GPUs. Although current homogeneous chips tightly couple the cores with cache-coherent shared virtual memory (CCSVM), this is not the communication paradigm used by any current HMC. In this paper, we present a CCSVM design for a CPU/MTTOP chip, as well as an extension of the pthreads programming model, called xthreads, for programming this HMC. Our goal is to evaluate the potential performance benefits of tightly coupling heterogeneous cores with CCSVM

    Defining correctness conditions for concurrent objects in multicore architectures

    Get PDF
    Correctness of concurrent objects is defined in terms of conditions that determine allowable relationships between histories of a concurrent object and those of the corresponding sequential object. Numerous correctness conditions have been proposed over the years, and more have been proposed recently as the algorithms implementing concurrent objects have been adapted to cope with multicore processors with relaxed memory architectures. We present a formal framework for defining correctness conditions for multicore architectures, covering both standard conditions for totally ordered memory and newer conditions for relaxed memory, which allows them to be expressed in uniform manner, simplifying comparison. Our framework distinguishes between order and commitment properties, which in turn enables a hierarchy of correctness conditions to be established. We consider the Total Store Order (TSO) memory model in detail, formalise known conditions for TSO using our framework, and develop sequentially consistent variations of these. We present a work-stealing deque for TSO memory that is not linearizable, but is correct with respect to these new conditions. Using our framework, we identify a new non-blocking compositional condition, fence consistency, which lies between known conditions for TSO, and aims to capture the intention of a programmer-specified fence

    Bridging the Gap between Programming Languages and Hardware Weak Memory Models

    Full text link
    We develop a new intermediate weak memory model, IMM, as a way of modularizing the proofs of correctness of compilation from concurrent programming languages with weak memory consistency semantics to mainstream multi-core architectures, such as POWER and ARM. We use IMM to prove the correctness of compilation from the promising semantics of Kang et al. to POWER (thereby correcting and improving their result) and ARMv7, as well as to the recently revised ARMv8 model. Our results are mechanized in Coq, and to the best of our knowledge, these are the first machine-verified compilation correctness results for models that are weaker than x86-TSO

    Pervasive Parallel And Distributed Computing In A Liberal Arts College Curriculum

    Get PDF
    We present a model for incorporating parallel and distributed computing (PDC) throughout an undergraduate CS curriculum. Our curriculum is designed to introduce students early to parallel and distributed computing topics and to expose students to these topics repeatedly in the context of a wide variety of CS courses. The key to our approach is the development of a required intermediate-level course that serves as a introduction to computer systems and parallel computing. It serves as a requirement for every CS major and minor and is a prerequisite to upper-level courses that expand on parallel and distributed computing topics in different contexts. With the addition of this new course, we are able to easily make room in upper-level courses to add and expand parallel and distributed computing topics. The goal of our curricular design is to ensure that every graduating CS major has exposure to parallel and distributed computing, with both a breadth and depth of coverage. Our curriculum is particularly designed for the constraints of a small liberal arts college, however, much of its ideas and its design are applicable to any undergraduate CS curriculum
    • …
    corecore