81 research outputs found

    Reasoning about Social Relationships with Jason

    Get PDF
    Abstract. This work faces the problem of enabling an approach to agent programming, which allows agents to seamlessly manage and work both on social relationships and on abstractions which typically characterize agents themselves, like goals, beliefs, intentions. A similar approach is necessary in order to easily develop Socio-Technical Systems and provides a basis for carrying on methodological studies on system engineering. The paper presents an extension of JaCa(Mo) in which Jason agents can reason on social relationships, that are represented as commitments, and where Jason agents interact by way of special CArtAgO artifacts, which reify commitment-based protocols

    Towards next generation coordination infrastructures

    Get PDF
    Coordination infrastructures play a central role in the engineering of multiagent systems. Since the advent of agent technology, research on coordination infrastructures has produced a significant number of infrastructures with varying features. In this paper, we review the the state-of-the-art coordination infrastructures with the purpose of identifying open research challenges that next generation coordination infrastructures should address. Our analysis concludes that next generation coordination infrastructures must address a number of challenges: (i) to become socially aware, by facilitating human interaction within a MAS; (ii) to assist agents in their decision making by providing decision support that helps them reduce the scope of reasoning and facilitates the achievement of their goals; and (iii) to increase openness to support on-line, fully decentralised design and execution. Furthermore, we identify some promising approaches in the literature, together with the research issues worth investigating, to cope with such challenges. © Cambridge University Press, 2015.The work presented in this paper has been partially funded by projects EVE (TIN2009-14702-C02-01), AT (CSD2007-0022), and the Generalitat of Catalunya grant 2009-SGR-1434Peer Reviewe

    Towards next generation coordination infrastructures

    Get PDF
    Coordination infrastructures play a central role in the engineering of multiagent systems. Since the advent of agent technology, research on coordination infrastructures has produced a significant number of infrastructures with varying features. In this paper, we review the the state-of-the-art coordination infrastructures with the purpose of identifying open research challenges that next generation coordination infrastructures should address. Our analysis concludes that next generation coordination infrastructures must address a number of challenges: (i) to become socially aware, by facilitating human interaction within a MAS; (ii) to assist agents in their decision making by providing decision support that helps them reduce the scope of reasoning and facilitates the achievement of their goals; and (iii) to increase openness to support on-line, fully decentralised design and execution. Furthermore, we identify some promising approaches in the literature, together with the research issues worth investigating, to cope with such challenges

    Agent Bodies: An Interface Between Agent and Environment

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-23850-0_2Interfacing the agents with their environment is a classical problem when designing multiagent systems. However, the models pertaining to this interface generally choose to either embed it in the agents, or in the environment. In this position paper, we propose to highlight the role of agent bodies as primary components of the multiagent system design. We propose a tentative definition of an agent body, and discuss its responsibilities in terms of MAS components. The agent body takes from both agent and environment: low-level agent mechanisms such as perception and influences are treated locally in the agent bodies. These mechanism participate in the cognitive process, but are not driven by symbol manipulation. Furthermore, it allows to define several bodies for one mind, either to simulate different capabilities, or to interact in the different environments - physical, social- the agent is immersed in. We also draw the main challenges to apply this concept effectively.Saunier, J.; Carrascosa Casamayor, C.; Galland, S.; Kanmeugne, PS. (2015). Agent Bodies: An Interface Between Agent and Environment. En Agent Environments for Multi-Agent Systems IV. 4th International Workshop, E4MAS 2014 - 10 Years Later, Paris, France, May 6, 2014. 25-40. doi:10.1007/978-3-319-23850-0_2S2540Barella, A., Ricci, A., Boissier, O., Carrascosa, C.: MAM5: Multi-agent model for intelligent virtual environments. In: 10th European Workshop on Multi-Agent Systems (EUMAS 2012), pp. 16–30 (2012)Behe, F., Galland, S., Gaud, N., Nicolle, C., Koukam, A.: An ontology-based metamodel for multiagent-based simulations. Int. J. Simul. Model. Pract. Theor. 40, 64–85 (2014). http://authors.elsevier.com/sd/article/S1569190X13001342Brooks, R.A.: Intelligence without representation. Artif. Intell. 47(1), 139–159 (1991)Campos, J., López-Sánchez, M., Rodríguez-Aguilar, J.A., Esteva, M.: Formalising situatedness and adaptation in electronic institutions. In: Hübner, J.F., Matson, E., Boissier, O., Dignum, V. (eds.) COIN 2008. LNCS, vol. 5428, pp. 126–139. Springer, Heidelberg (2009)Galland, S., Balbo, F., Gaud, N., Rodriguez, S., Picard, G., Boissier, O.: Contextualize agent interactions by combining social and physical dimensions in the environment. In: Demazeau, Y., Decker, K. (eds.) 13th International Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS), June 2015Galland, S., Balbo, F., Gaud, N., Rodriguez, S., Picard, G., Boissier, O.: A multidimensional environment implementation for enhancing agent interaction. In: Bordini, R., Elkind, E. (eds.) Autonomous Agents and Multiagent Systems (AAMAS 2015), Istanbul, Turkey, May 2015Galland, S., Gaud, N., Demange, J., Koukam, A.: Environment model for multiagent-based simulation of 3D urban systems. In: the 7th European Workshop on Multiagent Systems (EUMAS 2009), Ayia Napa, Cyprus, December 2009 (paper 36)Gechter, F., Contet, J.M., Lamotte, O., Galland, S., Koukam, A.: Virtual intelligent vehicle urban simulator: application to vehicle platoon evaluation. Simul. Model. Practice Theor. (SIMPAT) 24, 103–114 (2012)Gibson, J.J.: The Theory of Affordances. Hilldale, USA (1977)Gouaïch, A., Michel, F., Guiraud, Y.: MIC ∗^{*} : a deployment environment for autonomous agents. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS (LNAI), vol. 3374, pp. 109–126. Springer, Heidelberg (2005)Gouaïch, A., Michel, F.: Towards a unified view of the environment (s) within multi-agent systems. Informatica (Slovenia) 29(4), 423–432 (2005)Helleboogh, A., Vizzari, G., Uhrmacher, A., Michel, F.: Modeling dynamic environments in multiagent simulation. Int. J. Auton. Agents Multiagent Syst. 14(1), 87–116 (2007)Ketenci, U.G., Bremond, R., Auberlet, J.M., Grislin, E.: Drivers with limited perception: models and applications to traffic simulation. Recherche transports sécurité, RTS (2013)Michel, F.: The IRM4S model: the influence/reaction principle for multiagent based simulation. ACM, May 2007Okuyama, F.Y., Bordini, R.H., da Rocha Costa, A.C.: ELMS: an environment description language for multi-agent simulation. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS (LNAI), vol. 3374, pp. 67–83. Springer, Heidelberg (2005)Platon, E., Sabouret, N., Honiden, S.: Environmental support for tag interactions. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 106–123. Springer, Heidelberg (2007)Ribeiro, T., Vala, M., Paiva, A.: Censys: a model for distributed embodied cognition. In: Aylett, R., Krenn, B., Pelachaud, C., Shimodaira, H. (eds.) IVA 2013. LNCS, vol. 8108, pp. 58–67. Springer, Heidelberg (2013)Ricci, A., Viroli, M., Omicini, A.: Programming MAS with artifacts. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) PROMAS 2005. LNCS (LNAI), vol. 3862, pp. 206–221. Springer, Heidelberg (2006)Ricci, A., Omicini, A., Viroli, M., Gardelli, L., Oliva, E.: Cognitive stigmergy: towards a framework based on agents and artifacts. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 124–140. Springer, Heidelberg (2007)Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems: an artifact-based perspective. Auton. Agent. Multi-Agent Syst. 23(2), 158–192 (2011)Ricci, A., Viroli, M., Omicini, A.: Environment-based coordination through coordination artifacts. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS (LNAI), vol. 3374, pp. 190–214. Springer, Heidelberg (2005)Ricci, A., Viroli, M., Omicini, A.: CArtAgO{\sf CArtA gO} : a framework for prototyping artifact-based environments in MAS. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 67–86. Springer, Heidelberg (2007)Rincon, J.A., Garcia, E., Julian, V., Carrascosa, C.: Developing adaptive agents situated in intelligent virtual environments. In: Polycarpou, M., de Carvalho, A.C.P.L.F., Pan, J.-S., Woźniak, M., Quintian, H., Corchado, E. (eds.) HAIS 2014. LNCS, vol. 8480, pp. 98–109. Springer, Heidelberg (2014)Saunier, J., Balbo, F., Pinson, S.: A formal model of communication and context awareness in multiagent systems. J. Logic Lang. Inform. 23(2), 219–247 (2014). http://dx.doi.org/10.1007/s10849-014-9198-8Saunier, J., Jones, H.: Mixed agent/social dynamics for emotion computation. In: Proceedings of the 2014 international conference on Autonomous agents and multi-agent systems, pp. 645–652. International Foundation for Autonomous Agents and Multiagent Systems (2014)Simonin, O., Ferber, J.: Modeling self satisfaction and altruism to handle action selection and reactive cooperation. In: 6th International Conference on the Simulation of Adaptive Behavior (SAB 2000 volume 2), pp. 314–323 (2000)Thalmann, D., Musse, S.R.: Crowd Simulation. Springer, London (2007)Thiebaux, M., Marsella, S., Marshall, A., Kallmann, M.: Smartbody: Behavior realization for embodied conversational agents. In: Proceedings of the 7th international joint conference on Autonomous agents and multiagent systems, vol. 1, pp. 151–158 (2008)Viroli, M., Holvoet, T., Ricci, A., Schelfthout, K., Zambonelli, F.: Infrastructures for the environment of multiagent system. Int. J. Auton. Agent. Multi-Agent Syst. 14(1), 49–60 (2007)Weyns, D., Boucké, N., Holvoet, T.: Gradient field-based task assignment in an agv transportation system. In: Proceedings of the fifth international joint conference on Autonomous agents and multiagent systems, pp. 842–849. ACM (2006)Weyns, D., Omicini, A., Odell, J.: Environment as a first-class abstraction in multi-agent systems. Auton. Agent. Multi-Agent Syst 14(1), 5–30 (2007). special Issue on Environments for Multi-agent SystemsWeyns, D., Van Dyke Parunak, H., Michel, F., Holvoet, T., Ferber, J.: Environments for multiagent systems state-of-the-art and research challenges. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS (LNAI), vol. 3374, pp. 1–47. Springer, Heidelberg (2005)Weyns, D., Steegmans, E., Holvoet, T.: Towards active perception in situated multi-agent systems. Special Issue J. Appl. Artif. Intell. 18(9–10), 867–883 (2004)Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.S.: Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robot. Autom. Mag. 14(1), 43–52 (2007
    • …
    corecore