4 research outputs found

    On the naturalness of software

    Get PDF
    Natural languages like English are rich, complex, and powerful. The highly creative and graceful use of languages like English and Tamil, by masters like Shakespeare and Avvaiyar, can certainly delight and inspire. But in practice, given cognitive constraints and the exigencies of daily life, most human utterances are far simpler and much more repetitive and predictable. In fact, these utterances can be very usefully modeled using modern statistical methods. This fact has led to the phenomenal success of statistical approaches to speech recognition, natural language translation, question-answering, and text mining and comprehension. We begin with the conjecture that most software is also natural, in the sense that it is created by humans at work, with all the attendant constraints and limitations---and thus, like natural language, it is also likely to be repetitive and predictable. We then proceed to ask whether (a) code can be usefully modeled by statistical language models and (b) such models can be leveraged to support software engineers. Using the widely adopted n-gram model, we provide empirical evidence supportive of a positive answer to both these questions. We show that code is also very regular, and, in fact, even more so than natural languages. As an example use of the model, we have developed a simple code completion engine for Java that, despite its simplicity, already improves Eclipse's completion capability. We conclude the paper by laying out a vision for future research in this area

    Mining source code repositories at massive scale using language modeling

    Get PDF
    Abstract—The tens of thousands of high-quality open source software projects on the Internet raise the exciting possibility of studying software development by finding patterns across truly large source code repositories. This could enable new tools for developing code, encouraging reuse, and navigating large projects. In this paper, we build the first giga-token probabilistic language model of source code, based on 352 million lines of Java. This is 100 times the scale of the pioneering work by Hindle et al. The giga-token model is significantly better at the code suggestion task than previous models. More broadly, our approach provides a new “lens ” for analyzing software projects, enabling new complexity metrics based on statistical analysis of large corpora. We call these metrics data-driven complexity metrics. We propose new metrics that measure the complexity of a code module and the topical centrality of a module to a software project. In particular, it is possible to distinguish reusable utility classes from classes that are part of a program’s core logic based solely on general information theoretic criteria. I
    corecore