3,366 research outputs found

    1-Bit processing based model predictive control for fractionated satellite missions

    Get PDF
    In this thesis, a 1-bit processing based Model Predictive Control (OBMPC) structure is proposed for a fractionated satellite attitude control mission. Despite the appealing advantages of the MPC algorithm towards constrained MIMO control applications, implementing the MPC algorithm onboard a small satellite is certainly challenging due to the limited onboard resources. The proposed design is based on the 1-bit processing concept, which takes advantage of the affine relation between the 1-bit state feedback and multi-bit parameters to implement a multiplier free MPC controller. As multipliers are the major power consumer in online optimization, the OBMPC structure is proven to be more efficient in comparison to the conventional MPC implementation in term of power and circuit complexity. The system is in digital control nature, affected by quantization noise introduced by Δ∑ modulators. The stability issues and practical design criteria are also discussed in this work. Some other aspects are considered in this work to complete the control system. Firstly, the implementation of the OBMPC system relies on the 1-bit state feedbacks. Hence, 1-bit sensing components are needed to implement the OBMPC system. While the ∆∑ modulator based Microelectromechanical systems (MEMS) gyroscope is considered in this work, it is possible to implement this concept into other sensing components. Secondly, as the proposed attitude mission is based on the wireless inter-satellite link (ISL), a state estimator is required. However, conventional state estimators will once again introduce multi-bit signals, and compromise the simple, direct implementation of the OBMPC controller. Therefore, the 1-bit state estimator is also designed in this work to satisfy the requirements of the proposed fractionated attitude control mission. The simulation for the OBMPC is based on a 2U CubeSat model in a fractionated satellite structure, in which the payload and actuators are separated from the controller and controlled via the ISL. Matlab simulations and FPGA implementation based performance analysis shows that the OBMPC is feasible for fractionated satellite missions and is advantageous over the conventional MPC controllers

    1-Bit processing based model predictive control for fractionated satellite missions

    Get PDF
    In this thesis, a 1-bit processing based Model Predictive Control (OBMPC) structure is proposed for a fractionated satellite attitude control mission. Despite the appealing advantages of the MPC algorithm towards constrained MIMO control applications, implementing the MPC algorithm onboard a small satellite is certainly challenging due to the limited onboard resources. The proposed design is based on the 1-bit processing concept, which takes advantage of the affine relation between the 1-bit state feedback and multi-bit parameters to implement a multiplier free MPC controller. As multipliers are the major power consumer in online optimization, the OBMPC structure is proven to be more efficient in comparison to the conventional MPC implementation in term of power and circuit complexity. The system is in digital control nature, affected by quantization noise introduced by Δ∑ modulators. The stability issues and practical design criteria are also discussed in this work. Some other aspects are considered in this work to complete the control system. Firstly, the implementation of the OBMPC system relies on the 1-bit state feedbacks. Hence, 1-bit sensing components are needed to implement the OBMPC system. While the ∆∑ modulator based Microelectromechanical systems (MEMS) gyroscope is considered in this work, it is possible to implement this concept into other sensing components. Secondly, as the proposed attitude mission is based on the wireless inter-satellite link (ISL), a state estimator is required. However, conventional state estimators will once again introduce multi-bit signals, and compromise the simple, direct implementation of the OBMPC controller. Therefore, the 1-bit state estimator is also designed in this work to satisfy the requirements of the proposed fractionated attitude control mission. The simulation for the OBMPC is based on a 2U CubeSat model in a fractionated satellite structure, in which the payload and actuators are separated from the controller and controlled via the ISL. Matlab simulations and FPGA implementation based performance analysis shows that the OBMPC is feasible for fractionated satellite missions and is advantageous over the conventional MPC controllers

    Correcting Charge-Constrained Errors in the Rank-Modulation Scheme

    Get PDF
    We investigate error-correcting codes for a the rank-modulation scheme with an application to flash memory devices. In this scheme, a set of n cells stores information in the permutation induced by the different charge levels of the individual cells. The resulting scheme eliminates the need for discrete cell levels, overcomes overshoot errors when programming cells (a serious problem that reduces the writing speed), and mitigates the problem of asymmetric errors. In this paper, we study the properties of error-correcting codes for charge-constrained errors in the rank-modulation scheme. In this error model the number of errors corresponds to the minimal number of adjacent transpositions required to change a given stored permutation to another erroneous one—a distance measure known as Kendall’s τ-distance.We show bounds on the size of such codes, and use metric-embedding techniques to give constructions which translate a wealth of knowledge of codes in the Lee metric to codes over permutations in Kendall’s τ-metric. Specifically, the one-error-correcting codes we construct are at least half the ball-packing upper bound

    Matrix Transform Imager Architecture for On-Chip Low-Power Image Processing

    Get PDF
    Camera-on-a-chip systems have tried to include carefully chosen signal processing units for better functionality, performance and also to broaden the applications they can be used for. Image processing sensors have been possible due advances in CMOS active pixel sensors (APS) and neuromorphic focal plane imagers. Some of the advantages of these systems are compact size, high speed and parallelism, low power dissipation, and dense system integration. One can envision using these chips for portable and inexpensive video cameras on hand-held devices like personal digital assistants (PDA) or cell-phones In neuromorphic modeling of the retina it would be very nice to have processing capabilities at the focal plane while retaining the density of typical APS imager designs. Unfortunately, these two goals have been mostly incompatible. We introduce our MAtrix Transform Imager Architecture (MATIA) that uses analog floating--gate devices to make it possible to have computational imagers with high pixel densities. The core imager performs computations at the pixel plane, but still has a fill-factor of 46 percent - comparable to the high fill-factors of APS imagers. The processing is performed continuously on the image via programmable matrix operations that can operate on the entire image or blocks within the image. The resulting data-flow architecture can directly perform all kinds of block matrix image transforms. Since the imager operates in the subthreshold region and thus has low power consumption, this architecture can be used as a low-power front end for any system that utilizes these computations. Various compression algorithms (e.g. JPEG), that use block matrix transforms, can be implemented using this architecture. Since MATIA can be used for gradient computations, cheap image tracking devices can be implemented using this architecture. Other applications of this architecture can range from stand-alone universal transform imager systems to systems that can compute stereoscopic depth.Ph.D.Committee Chair: Hasler, Paul; Committee Member: David Anderson; Committee Member: DeWeerth, Steve; Committee Member: Jackson, Joel; Committee Member: Smith, Mar

    Parallel Algorithms for Time and Frequency Domain Circuit Simulation

    Get PDF
    As a most critical form of pre-silicon verification, transistor-level circuit simulation is an indispensable step before committing to an expensive manufacturing process. However, considering the nature of circuit simulation, it can be computationally expensive, especially for ever-larger transistor circuits with more complex device models. Therefore, it is becoming increasingly desirable to accelerate circuit simulation. On the other hand, the emergence of multi-core machines offers a promising solution to circuit simulation besides the known application of distributed-memory clustered computing platforms, which provides abundant hardware computing resources. This research addresses the limitations of traditional serial circuit simulations and proposes new techniques for both time-domain and frequency-domain parallel circuit simulations. For time-domain simulation, this dissertation presents a parallel transient simulation methodology. This new approach, called WavePipe, exploits coarse-grained application-level parallelism by simultaneously computing circuit solutions at multiple adjacent time points in a way resembling hardware pipelining. There are two embodiments in WavePipe: backward and forward pipelining schemes. While the former creates independent computing tasks that contribute to a larger future time step, the latter performs predictive computing along the forward direction. Unlike existing relaxation methods, WavePipe facilitates parallel circuit simulation without jeopardizing convergence and accuracy. As a coarse-grained parallel approach, it requires low parallel programming effort, furthermore it creates new avenues to have a full utilization of increasingly parallel hardware by going beyond conventional finer grained parallel device model evaluation and matrix solutions. This dissertation also exploits the recently developed explicit telescopic projective integration method for efficient parallel transient circuit simulation by addressing the stability limitation of explicit numerical integration. The new method allows the effective time step controlled by accuracy requirement instead of stability limitation. Therefore, it not only leads to noticeable efficiency improvement, but also lends itself to straightforward parallelization due to its explicit nature. For frequency-domain simulation, this dissertation presents a parallel harmonic balance approach, applicable to the steady-state and envelope-following analyses of both driven and autonomous circuits. The new approach is centered on a naturally-parallelizable preconditioning technique that speeds up the core computation in harmonic balance based analysis. The proposed method facilitates parallel computing via the use of domain knowledge and simplifies parallel programming compared with fine-grained strategies. As a result, favorable runtime speedups are achieved

    Codes for Asymmetric Limited-Magnitude Errors With Application to Multilevel Flash Memories

    Get PDF
    Several physical effects that limit the reliability and performance of multilevel flash memories induce errors that have low magnitudes and are dominantly asymmetric. This paper studies block codes for asymmetric limited-magnitude errors over q-ary channels. We propose code constructions and bounds for such channels when the number of errors is bounded by t and the error magnitudes are bounded by ℓ. The constructions utilize known codes for symmetric errors, over small alphabets, to protect large-alphabet symbols from asymmetric limited-magnitude errors. The encoding and decoding of these codes are performed over the small alphabet whose size depends only on the maximum error magnitude and is independent of the alphabet size of the outer code. Moreover, the size of the codes is shown to exceed the sizes of known codes (for related error models), and asymptotic rate-optimality results are proved. Extensions of the construction are proposed to accommodate variations on the error model and to include systematic codes as a benefit to practical implementation

    Controlling Hazardous Releases While Protecting Passengers in Civil Infrastructure Systems

    Full text link
    The threat of accidental or deliberate toxic chemicals released into public spaces is a significant concern to public safety, and the real-time detection and mitigation of such hazardous contaminants has the potential to minimize harm and save lives. Furthermore, the safe evacuation of occupants during such a catastrophe is of utmost importance. This research entails a comprehensive means to address such scenarios, through both the sensing and control of contaminants, and the modeling of and potential communication to occupants as they evacuate. First, a computational fluid dynamics model has been developed that is capable of detecting and mitigating the hazardous contaminant over several time horizons using model predictive control optimization. Next, an evacuation agent-based model has been designed and coupled with the flow control model to simulate agents evacuating while interacting with a dynamic, threatening environment. Finally, a physical prototype (blower wind tunnel) has been constructed with capability of detection (via Ethernet-connected camera) of and mitigation (via compressed-air operated actuators) of a `contaminant' (i.e. smoke) to test the real-time feasibility of the computational fluid dynamics flow control model.PHDEnvironmental EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/135812/1/srimer_1.pd

    Integrated Circuits for Programming Flash Memories in Portable Applications

    Get PDF
    Smart devices such as smart grids, smart home devices, etc. are infrastructure systems that connect the world around us more than before. These devices can communicate with each other and help us manage our environment. This concept is called the Internet of Things (IoT). Not many smart nodes exist that are both low-power and programmable. Floating-gate (FG) transistors could be used to create adaptive sensor nodes by providing programmable bias currents. FG transistors are mostly used in digital applications like Flash memories. However, FG transistors can be used in analog applications, too. Unfortunately, due to the expensive infrastructure required for programming these transistors, they have not been economical to be used in portable applications. In this work, we present low-power approaches to programming FG transistors which make them a good candidate to be employed in future wireless sensor nodes and portable systems. First, we focus on the design of low-power circuits which can be used in programming the FG transistors such as high-voltage charge pumps, low-drop-out regulators, and voltage reference cells. Then, to achieve the goal of reducing the power consumption in programmable sensor nodes and reducing the programming infrastructure, we present a method to program FG transistors using negative voltages. We also present charge-pump structures to generate the necessary negative voltages for programming in this new configuration
    • 

    corecore