292 research outputs found

    Engineering Pervasive Service Ecosystems: The SAPERE approach

    Get PDF
    Emerging pervasive computing services will typically involve a large number of devices and service components cooperating together in an open and dynamic environment. This calls for suitable models and infrastructures promoting spontaneous, situated, and self-adaptive interactions between components. SAPERE (Self-Aware Pervasive Service Ecosystems) is a general coordination framework aimed at facilitating the decentralized and situated execution of self-organizing and self-adaptive pervasive computing services. SAPERE adopts a nature-inspired approach, in which pervasive services are modeled and deployed as autonomous individuals in an ecosystem of other services and devices, all of which interact in accord to a limited set of coordination laws, or eco-laws. In this article, we present the overall rationale underlying SAPERE and its reference architecture. We introduce the eco-laws--based coordination model and show how it can be used to express and easily enforce general-purpose self-organizing coordination patterns. The middleware infrastructure supporting the SAPERE model is presented and evaluated, and the overall advantages of SAPERE are discussed in the context of exemplary use cases

    Engineering environment-mediated coordination via nature-inspired laws

    Get PDF
    SAPERE is a general multiagent framework to support the development of self-organizing pervasive computing services. One of the key aspects of the SAPERE approach is to have all interactions between agents take place in an indirect way, via a shared spatial environment. In such environment, a set of nature-inspired coordination laws have been defined to rule the coordination activities of the application agents and promote the provisioning of adaptive and self-organizing services

    Engineering self-organizing urban superorganisms

    Get PDF
    Progresses in ubiquitous, embedded, and social networking and computing make possible for people in urban areas to dynamically interact with each other and with ICT devices around. This can result in a system with a very large number of agents working together in an orchestrated and self-organizing way to achieve specific urban-level goals, i.e., as if they were a “superorganism”. In this paper, we sketch the future vision of urban superorganisms and overview some emerging application areas heading towards the vision. Following, we identify the key challenges in engineering self-organizing multi-agent systems that can work as a superorganism, i.e., seamlessly involving ICT agents and human agents so to achieve some required urban level goals. Finally, we introduce the reference architecture for an infrastructure to support our future vision of self-organizing urban superorganisms

    Statistical analysis of chemical computational systems with MULTIVESTA and ALCHEMIST

    Get PDF
    The chemical-oriented approach is an emerging paradigm for programming the behaviour of densely distributed and context-aware devices (e.g. in ecosystems of displays tailored to crowd steering, or to obtain profile-based coordinated visualization). Typically, the evolution of such systems cannot be easily predicted, thus making of paramount importance the availability of techniques and tools supporting prior-to-deployment analysis. Exact analysis techniques do not scale well when the complexity of systems grows: as a consequence, approximated techniques based on simulation assumed a relevant role. This work presents a new simulation-based distributed tool addressing the statistical analysis of such a kind of systems, which has been obtained by chaining two existing tools: MultiVeStA and Alchemist. The former is a recently proposed lightweight tool which allows to enrich existing discrete event simulators with distributed statistical analysis capabilities, while the latter is an efficient simulator for chemical-oriented computational systems. The tool is validated against a crowd steering scenario, and insights on the performance are provided by discussing how these scale distributing the analysis tasks on a multi-core architecture

    Pervasive Service Ecosystems

    Get PDF

    Nature-Inspired Coordination Models: Current Status and Future Trends

    Get PDF
    Coordination models and languages are meant to provide abstractions and mechanisms to harness the space of interaction as one of the foremost sources of complexity in computational systems. Nature-inspired computing aims at understanding the mechanisms and patterns of complex natural systems in order to bring their most desirable features to computational systems. Thus, the promise of nature-inspired coordination models is to prove themselves fundamental in the design of complex computational systems|such as intelligent, knowledge-intensive, pervasive, adaptive, and self-organising ones. In this paper, we survey the most relevant nature-inspired coordination models in the literature, focussing in particular on tuple-based models, and foresee the most interesting research trends in the field

    Simulation of Large Scale Computational Ecosystems with Alchemist: A Tutorial

    Get PDF
    Many interesting systems in several disciplines can be modeled as networks of nodes that can store and exchange data: pervasive systems, edge computing scenarios, and even biological and bio-inspired systems. These systems feature inherent complexity, and often simulation is the preferred (and sometimes the only) way of investigating their behavior; this is true both in the design phase and in the verification and testing phase. In this tutorial paper, we provide a guide to the simulation of such systems by leveraging Alchemist, an existing research tool used in several works in the literature. We introduce its meta-model and its extensible architecture; we discuss reference examples of increasing complexity; and we finally show how to configure the tool to automatically execute multiple repetitions of simulations with different controlled variables, achieving reliable and reproducible results
    corecore